

Video and 3D Generation

Kevin Lin

6/17/2024

Evolution of Video Diffusion Model

- Video-Gen Foundation Model
- Faster training
- Faster inference
- Diverse content creation

Creating Video from Text

Prompt: A flock of paper airplanes flutters through a dense jungle, weaving around trees as if they were migrating birds.

Video Diffusion Models: *Pioneer Work*

- 3D UNet factorized over space and time
 - 2D conv is inflated to 3D
- Insert temporal attention layer that attends across the temporal dimension

Video Diffusion Models (Ho et al. NeurIPS'22)

Make-A-Video

Make-A-Video

Temporal Attention

Initialized with zero projection (resulting in identity function)

Preliminary Results

Prompt: Firework

Video Diffusion Models (Ho et al. '22)

Curated Training Data Improves Performance

• Scaling training data from 10M to 577M video clips

Stable Video Diffusion (Blattmann et al. '23)

Quality Improves as Training Compute Increases

Base compute

4x compute

32x compute

Sora: Video generation models as world simulators (OpenAI '24)

- Video-Gen Foundation Model
- Faster training
- Faster inference
- Diverse content creation

Training a Video Diffusion Model is Expensive!

SOTA Video Diffusion Model

(Case Study: Stable Video Diffusion)

577M Video Clips

1521M Parameters

Dedicated GPU clusters

Slow and complex training recipe

Faster Training

20~50 Video Clips

+30M Parameters

~2 hours training

Faster Training with Motion Modules

Image Layers of Personalized T2I

20~50 Video Clips

+30M Parameters

~2 hours training

AnimateDiff (Guo et al. ICLR'24)

We have faster training now. How about inference?

SOTA Video Diffusion Model

250 Steps

Faster Sampling

4

4 Steps

Challenges in Video Diffusion Distillation

Image Diffusion Distillation

Video Diffusion Distillation

Appearance Consistency

Motion Consistency

Consistency Model (Song et al. '23)

Motion Consistency Model (Zhai et al. '24)

Challenges in Video Diffusion Distillation

High Quality Image Data

Low Quality Video Data

WebVid-10M

LAION-Aesthetics

Motion Consistency Model

Our motion consistency model not only distill the motion prior from the teacher to accelerate sampling, but also can benefit from an additional high-quality image dataset to improve the frame quality of generated videos.

Motion Consistency Model (Zhai et al. '24)

Motion Consistency Model

Motion Consistency Model (Zhai et al. '24)

✓ Video-Gen Foundation Model

✓ Faster training

✓ Faster inference

✓ Diverse content creation: Variable durations Controllability Consistency

LONG VIDEO

Given the prompts of a script, NUWA-XL can generate an extremely long video that conforms to it in a "coarse-to-fine" process.

Diffusion over diffusion

Figure 1: Overview of NUWA-XL for extremely long video generation in a "coarse-to-fine" process. A global diffusion model first generates L keyframes which form a "coarse" storyline of the video, a series of local diffusion models are then applied to the adjacent frames, treated as the first and the last frames, to iteratively complete the middle frames resulting $O(L^m)$ "fine" frames in total.

NUWA-XL (Yu et al., ACL'23)

Simple Cartoon Videos

Rich and Diverse Contents?

Human Dance Generation

• Different subject – Same pose

DisCo (Wang et al. CVPR'24)

Human Dance Generation

• Same subject – Different pose

Reference Image

Dance #1

Dance #2

Dance #3

Dance #4

DisCo (Wang et al. CVPR'24)

DisCo for Human Dance Generation

 By disentangling the control from all three conditions, DisCo enable arbitrary compositionality of human subjects, backgrounds, and dance-moves.

DisCo (Wang et al. CVPR'24)

Wonderjourney

Wonderjourney: Going from Anywhere to Everywhere (Yu et al. CVPR'24)

CAT3D: Multi-View Latent Diffusion Model

Input Image(s)

Generated Views

Optimize a NeRF (55 seconds) 3D Model

Sample from multi-view diffusion model (5 seconds)

NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis. (Mildenhall et al., ECCV '22) CAT3D: Create Anything in 3D with Multi-View Diffusion Models (Gao et al. '24)

- ✓ Video-Gen Foundation Model
- ✓ Faster training
- ✓ Faster inference
- Coherent video + Realistic contents + 3D consistency
- → World Model!

Video Generation Models as World Simulators

✓ 3D Consistency

✓ Coherence

Sora: Video generation models as world simulators (OpenAI '24)

Discussion

- How to accurately model the physical and digital world? *Physics, object states, and things beyond languages*
- How to effectively evaluate the emerging capabilities?
 Needs of exploration and new benchmark
- Safety

Learning from real-world use is a critical component

MMWorld: World Model Evaluation in Videos

MMWorld: Towards Multi-discipline Multi-faceted World Model Evaluation in Videos (He et al. '24)

Discussion: World Model

- Build internal representations of the 3D world
- Predict and simulate future events within the internal representation
- Reasoning and planning: governed by our brain's prediction of the future based on our internal world model

- [2] Counterintuitive behavior of social systems. J.W. Forrester. 1971.
- [3] Motion-Dependent Representation of Space in Area MT+. M. Gerrit et al. 2013

^[1] Primary Visual Cortex Represents the Difference Between Past and Present. N. Nortmann et al. 2015

Discussion: World Model

- Build internal representations of the 3D world
- Predict and simulate future events within the internal representation
- Reasoning and planning: governed by our brain's prediction of the future based on our internal world model

The image of the world around us, which we carry in our head, is just a model. He selects concepts and relationships, and uses those to represent and simulate the real system.

- Jay Wright Forrester, Father of System Dynamics talks about mental world models

Acknowledgment

Mike Shou's Youtube video

Tutorial: Video Diffusion Models

Lilian Weng's blog

What are Diffusion Models?

Hung-Yi Lee's Youtube video

Introduction to Diffusion Models

Yuyang Zhao

Yining Hong

Yuanhao Zhai

Thank you!