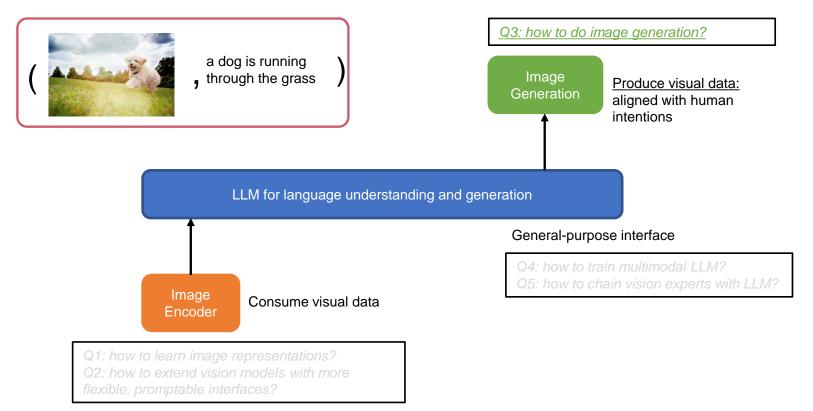


Alignments in Text-to-Image Generation

Zhengyuan Yang

1

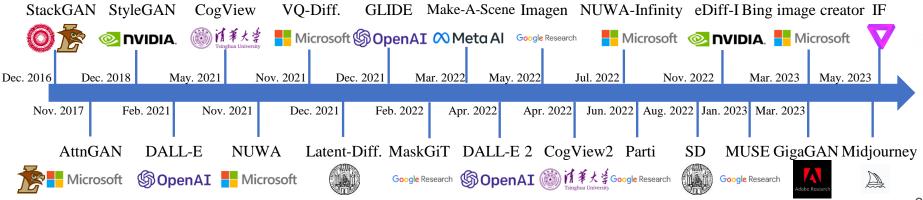
Alignments in Text-to-Image Generation



Text-to-Image Generation

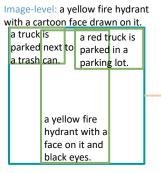
- Text-to-image (T2I)
- Aligning with human intentions

Text prompt: a yellow fire hydrant with a cartoon face drawn on it. T2I



Alignments in Text-to-Image Generation

Controllable generation



Stable

Editing

Better following prompts

Image credit: ReCo, InstructPix2Pix, Attend-and-Excite, DreamBooth

Concept customization

sleeping

Input images

in a doghouse in a buck .+.

Agenda

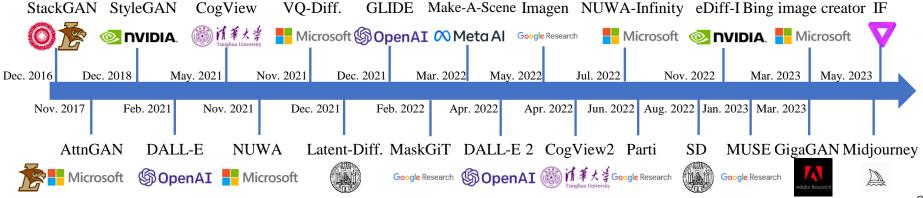
- Text-to-image (T2I) basics
- Aligning human intentions in T2I generation
 - Controllable generation
 - Editing
 - Better following prompts
 - Concept customization
- Summary and discussion

Text-to-Image Basics

- GAN
- Auto-regressive
- Non-AR Transformer
- Diffusion

Text prompt: a yellow fire hydrant with a cartoon face drawn on it.

T2I



Text-to-Image Basics

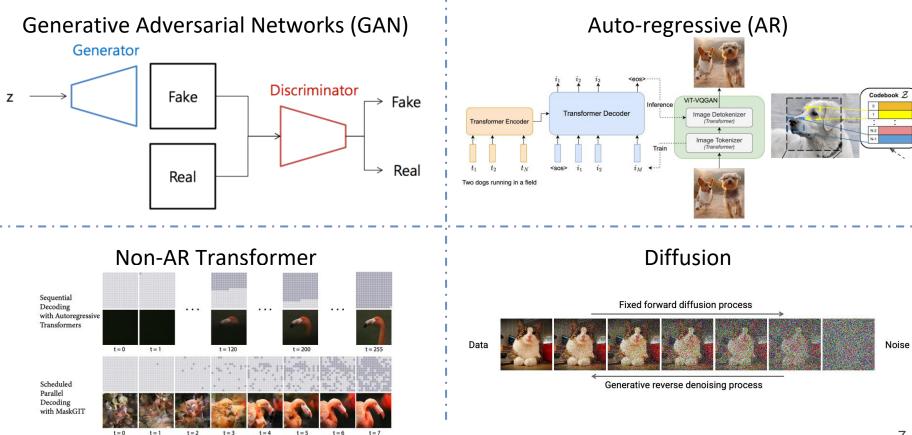
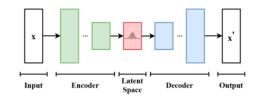
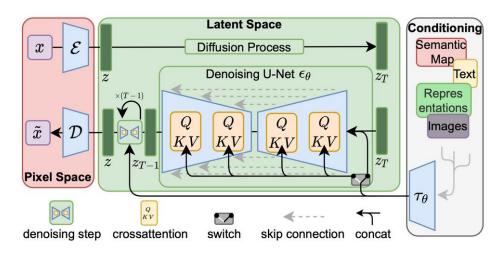


Image credit: Taming Transformer, Parti, MaskGiT, CVPR 2022 Tutorial: Denoising Diffusion-based Generative Modeling: Foundations and Applications

Stable Diffusion (SD) Basics

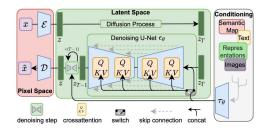
- SD overview
 - Variational autoencoder (VAE)
 - Condition encoder
 - Conditional denoising U-Net





Stable Diffusion (SD) Basics

- Inference flow
 - Variational autoencoder (VAE)
 - Condition encoder
 - Conditional denoising U-Net



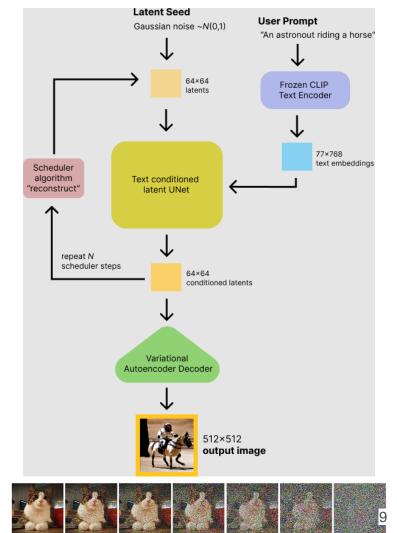


Image credit: https://huggingface.co/blog/stable_diffusion

Stable Diffusion (SD) Basics

 Zooming into conditional U-Net: How text condition operates on image?

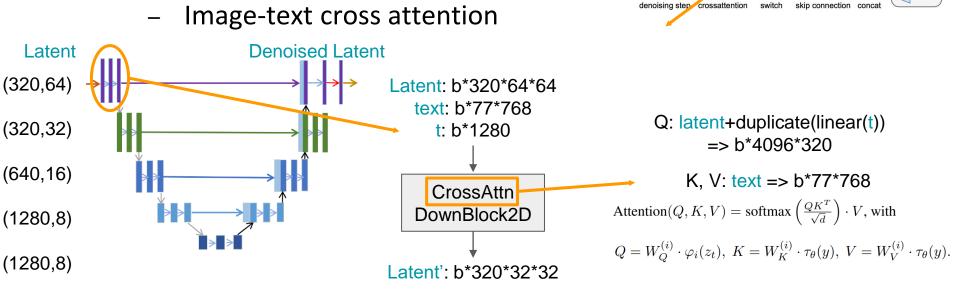


Image-text attention map of HW*77

Latent Space

Diffusion Proces

 \tilde{x}

Pixel Space

moising U-Net

 $\begin{array}{c} Q \\ K_{\bullet}V \end{array}$

Conditioning Semantic

Map

mages

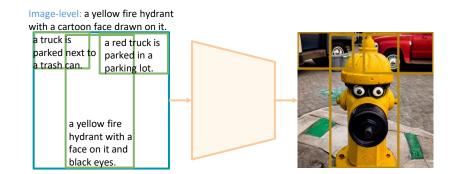
Text Repres entations

Agenda

- Text-to-image (T2I) basics
- Aligning human intentions in T2I generation
 - Controllable generation
 - Editing
 - Better following prompts
 - Concept customization
- Summary and discussion

Controllable Generation

- Text+layout/box: localized description control
- Text+dense control (e.g., mask, edge, scribble, etc.)
- Inference-time guidance



1] GLIGEN: Open-Set Grounded Text-to-Image Generation
2] ReCo: Region-Controlled Text-to-Image Generation
3] Diagnostic Benchmark and Iterative Inpainting for Layout-Guided
mage Generation
4] Adding Conditional Control to Text-to-Image Diffusion Models
5] Composer: Creative and Controllable Image Synthesis with
Composable Conditions
6] SpaText: Spatio-Textual Representation for Controllable Image
<u>Generation</u>
7] T2I-Adapter: Learning Adapters to Dig out More Controllable Ability for
Text-to-Image Diffusion Models
8] SceneComposer: Any-Level Semantic Image Synthesis
9] <u>Uni-ControlNet: All-in-One Control to Text-to-Image Diffusion Models</u>
10] UniControl: A Unified Diffusion Model for Controllable Visual
Generation In the Wild
11] Universal Guidance for Diffusion Models
12] Training-Free Layout Control with Cross-Attention Guidance

ReCo: Region-Controlled T2I Generation

ReCo: Region-Controlled T2I Generation

- Input sequence expansion: box tokens
- Grounded: box tokens operate on the text to follow
- Finetune T2I to understand box tokens

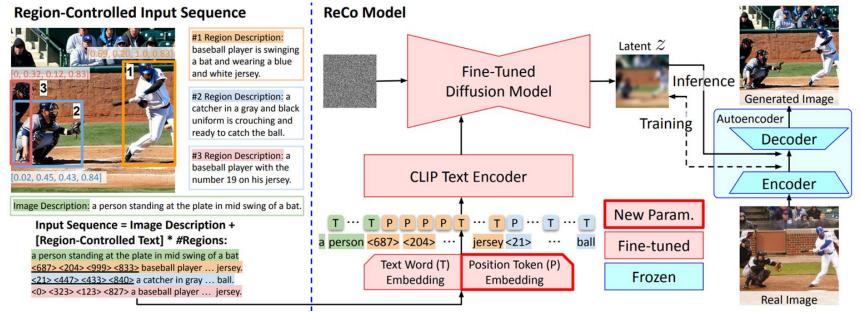
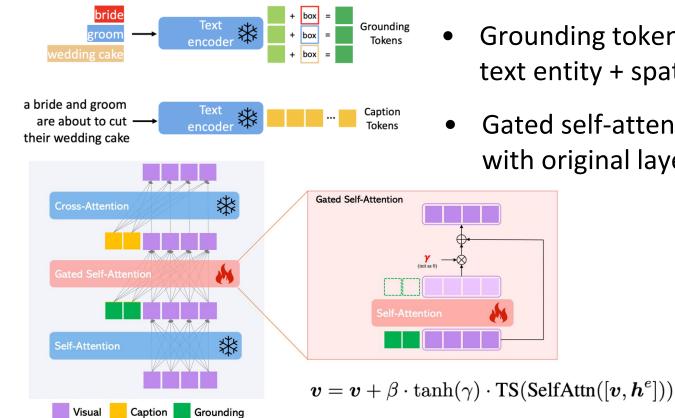


Image credit: "ReCo: Region-Controlled Text-to-Image Generation"

a person standing at the plate in mid swing of a bat <204><999><833 baseball player ... jersey. <21><447><433><840> a catcher in gray ... ball. <0><323><123><827> a baseball player ... jersey.

GLIGEN: Open-Set Grounded T2I Generation



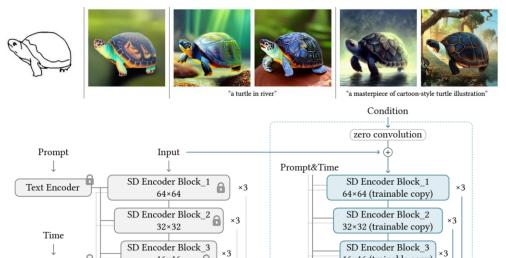
- Grounding tokens: grounded text entity + spatial location
- Gated self-attention layer with original layers frozen

Image credit: "GLIGEN: Open-Set Grounded Text-to-Image Generation"

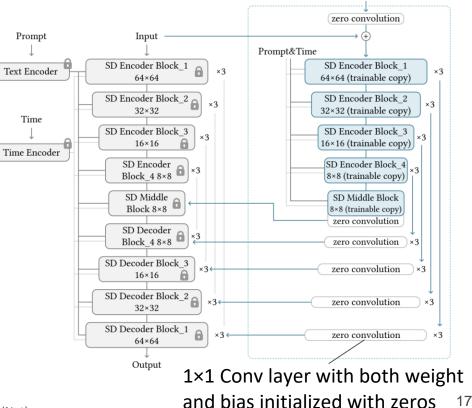
GLIGEN: Open-Set Grounded T2I Generation

- Bounding box grounding
- Keypoint grounding
- Spatially-aligned dense conditions

Text+Dense Control

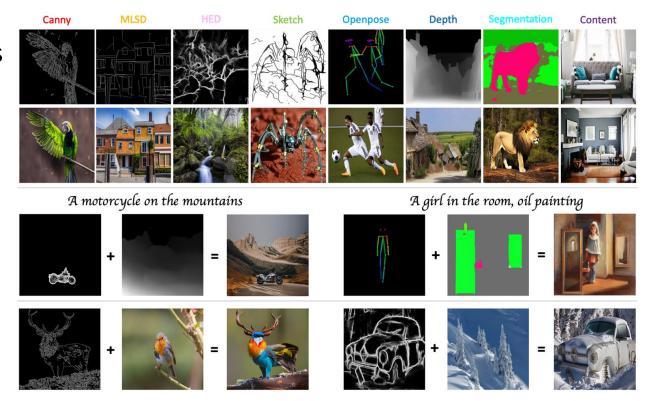


- Dense conditions: •
 - Canny Edge
 - Hough Line
 - **HED Boundary**
 - **User Sketching**
 - Human Pose
 - Semantic Segmentation
 - Depth
 - Normal Maps
 - Cartoon Line Drawing



Uni-ControlNet, UniControl

- Unified models for different conditions
- Condition composition



Inference-time guidance

Universal Guidance for Diffusion Models: • extending classifier guidance [1] to accept any general guidance function

$$\hat{\epsilon}_{\theta}(z_t, t) = \epsilon_{\theta}(z_t, t) + s(t) \cdot \nabla_{z_t} \ell(c, f(\hat{z}_0))$$

Box and

class

labels

Faster-

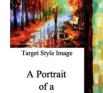
RCNN

E.g., detection:

Anchor classification, bounding box regression, and region label classification loss

[1] Diffusion Models Beat GANs on Image Synthesis

Image credit: "Universal Guidance for Diffusion Models"



woman

Predicted

image

"noisy" clean

Editing

- Latents spatial blend
- Image-text attention edit
- Edit instruction
- External models

"Swap sunflowers with roses"

[4] eDiff-I: Text-to-Image Diffusion Models with an Ensemble of Expert

"Add fireworks to the sky"

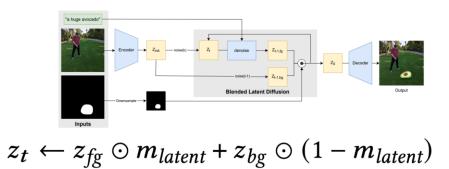
Denoisers

- [5] Region-Aware Diffusion for Zero-shot Text-driven Image Editing
- [6] Imagen Editor and EditBench: Advancing and Evaluating Text-Guided Image Inpainting
- [7] iEdit: Localised Text-guided Image Editing with Weak Supervision
- [8] EDICT: Exact Diffusion Inversion via Coupled Transformations
- [9] Prompt-to-Prompt Image Editing with Cross Attention Control
- [10] Imagic: Text-Based Real Image Editing with Diffusion Models
- [11] SINE: SINgle Image Editing With Text-to-Image Diffusion Models
- [12] InstructPix2Pix Learning to Follow Image Editing Instructions
- [13] <u>MasaCtrl: Tuning-Free Mutual Self-Attention Control for Consistent</u> <u>Image Synthesis and Editing</u>
- [14] Diffusion Self-Guidance for Controllable Image Generation
- [15] Instruct-X-Decoder
- [16] Grounded-SAM Inpainting
- [17] Inpaint Anything
- [18] Visual ChatGPT: Talking, Drawing and Editing with Visual

Foundation Models

Latents Spatial Blend

- Spatial editing with mask
- Image, text prompt, user input or segmented mask



from text original bg image

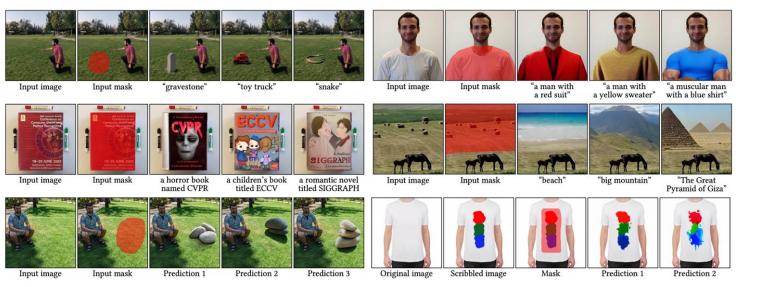


Image-text Attention Edit

- Edit generated images
- Manipulate image-text cross-attention map
- Word swap, adding new phrase, attention re-weighting

jelly beans

Image-text Attention Edit

• Maintaining two sets of cross-attention maps for edit: Original prompt: M_t Edited prompt: M_t^*

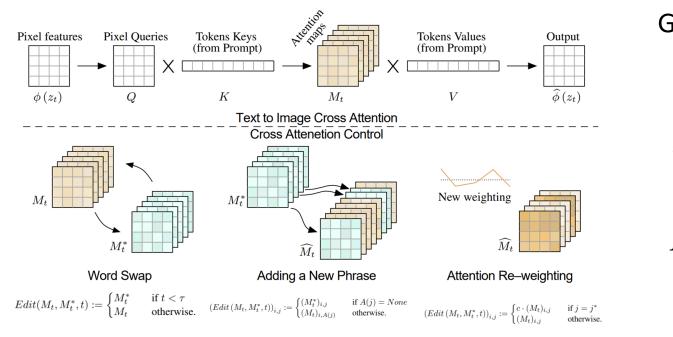
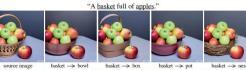


Image credit: "Prompt-to-Prompt Image Editing with Cross Attention Control"

Image-text Attention Edit

"Photo of a cat riding on a bicycle."



apples \rightarrow oranges apples \rightarrow chocolates apples \rightarrow cookies apples \rightarrow kittens apples \rightarrow smoke

Word Swap

"A photo of a bear wearing sunglasses on and having a drink."

"A photo of a butterfly on a flower."

... on a spikey flower

from candies."

Adding a New Phrase

"A tiger is sleeping(1) in a field."

A smiling(1) teddy bear.

The modem(4) city

"Photo of a field of poppies at night(4)."

Attention Re-weighting

Imagic

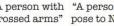
- Generated => natural image edits
- E.g., different dogs

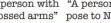
Input Image

Edited Images

"A sitting dog"

"A person with "A person in a greeting crossed arms" pose to Namaste hands"





"A jumping dog

"A person

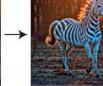
"A cat yawning"

"A cartoon (25 horse"

"A cat wearing an

apron"

hat"

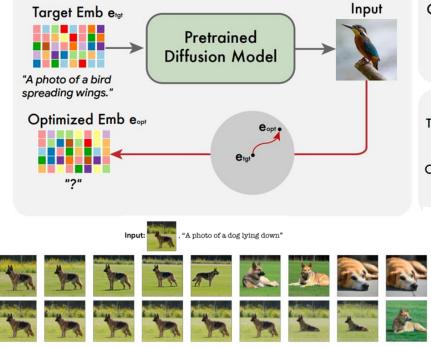


"A zebra"

Image credit: "Imagic: Text-Based Real Image Editing with Diffusion Models"

Imagic

- Obtain original text
 - (A) Text Embedding Optimization



 $\mathcal{L}(\mathbf{x}, \mathbf{e}, \theta) = \mathbb{E}_{t, \epsilon} \left[\| \boldsymbol{\epsilon} - f_{\theta}(\mathbf{x}_t, t, \mathbf{e}) \|_2^2 \right]$

η

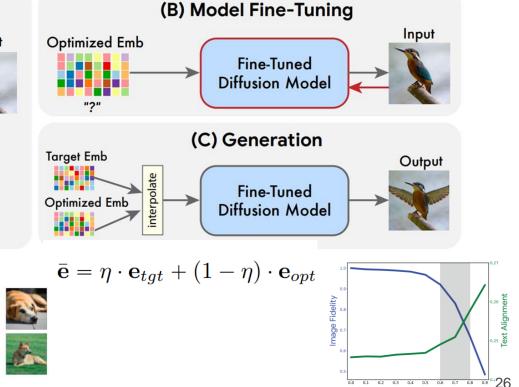
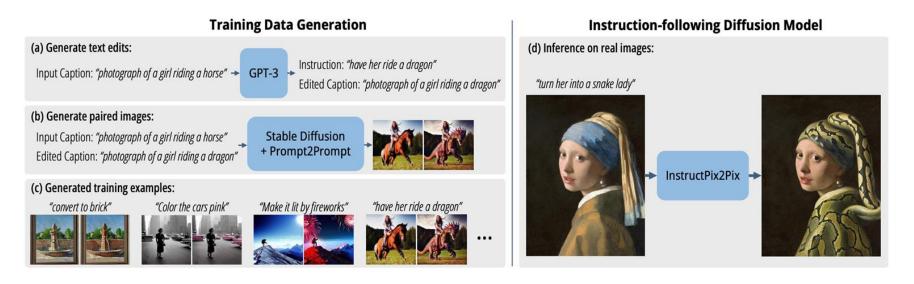


Image credit: "Imagic: Text-Based Real Image Editing with Diffusion Models"

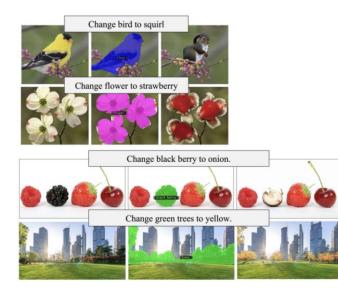
InstructPix2Pix

Obtain original text => Instruction-style text
 "a bird standing", "a bird spreading wings" => "have wings spread"

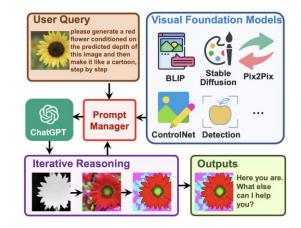


Editing Systems with External Models

• Segmentation



• LLM



Better Following Prompts

- Test-time latents
- Test-time attention
- Alignment tuning

StructureDiffusion

Stable Diffusion

Ours

A red car and a white sheep.

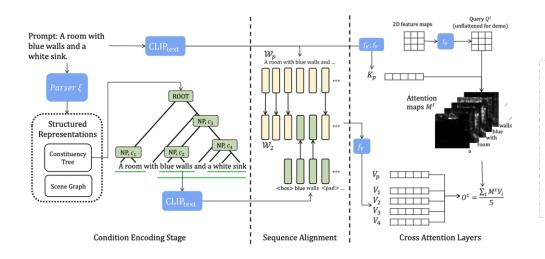
Attribute leakage

A brown bench sits in front of an old white building Interchanged attributes

A blue backpack and a brown elephant Missing objects

StructureDiffusion

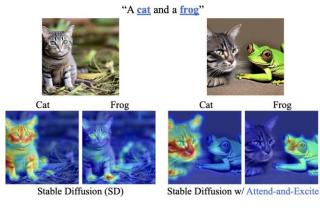
- Manipulating values in cross-attention based on linguistic parsing tree to enforce language structure
- Look at all noun phrases

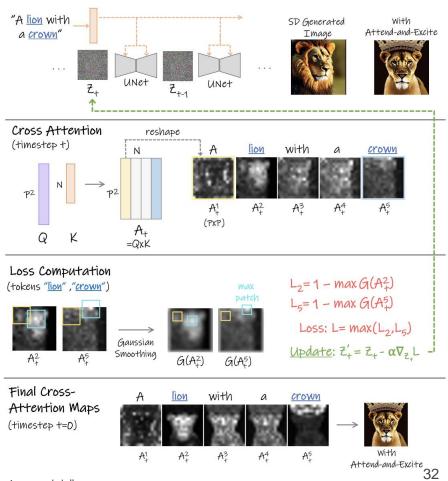


Q: latent+duplicate(linear(t)) => b*4096*320 K, V: text => b*77*768 Attention(Q, K, V) = softmax $\left(\frac{QK^T}{\sqrt{d}}\right) \cdot V$, with $Q = W_Q^{(i)} \cdot \varphi_i(z_t), K = W_K^{(i)} \cdot \tau_\theta(y), V = W_V^{(i)} \cdot \tau_\theta(y).$

Attend-and-Excite

- Enhance the maximal attention for the most neglected subject token
- Updates the latent with attention loss





DDPM Process

Image credit: "Attend-and-excite: Attention-based semantic guidance for text-to-image diffusion models"

Attend-and-Excite

DDPO

 RL for optimizing diffusion models on different downstream objectives

 Compressibility: Itama
 Training process

 Image: Compressibility: Itama
 Image: Compressibility: Itama

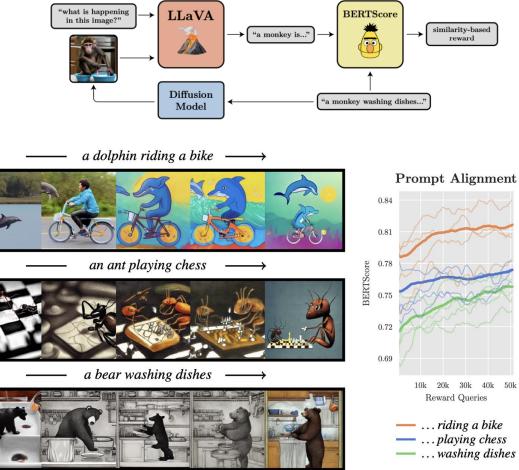
 Image: Compressibilitama
 Image: Compressibilitama

- Prompt Alignment: a raccoon washing dishes —

Image credit: "Training Diffusion Models with Reinforcement Learning"

DDPO

 VLM similarity reward to improve image-prompt alignment



Concept Customization

- Single-concept customization
- Multi-concept customization
- Without test-time finetuning

sleeping

Input images

opolis in a

in a doghouse in a bucket

	the one notopoots	the a dograduse the a backet
[1] An Image is Worth One	e Word: Personalizing To	ext-to-Image Generation
using Textual Inversion		
[2] DreamBooth: Fine Tun	ing Text-to-Image Diffus	sion Models for Subject-
Driven Generation		
[3] Encoder-based Domai	n Tuning for Fast Persor	nalization of Text-to-Image
Models		
[4] ELITE: Encoding Visua	al Concepts into Textual	Embeddings for
Customized Text-to-Image	e Generation	
[5] Multi-Concept Custom	zation of Text-to-Image	<u>Diffusion</u>
[6] Break-A-Scene: Extrac	ting Multiple Concepts f	<u>rom a Single Image</u>
[7] Paint by Example: Exe	mplar-based Image Edit	ing with Diffusion Models
[8] BLIP-Diffusion: Pre-tra	ined Subject Representa	ation for Controllable Text-
to-Image Generation and	<u>Editing</u>	
[9] Face0: Instantaneously	Conditioning a Text-to-	Image Model on a Face
[10] FastComposer: Tunir	g-Free Multi-Subject Im	age Generation with
Localized Attention		
[11] Unified Multi-Modal L	atent Diffusion for Joint S	<u>Subject and Text</u>
Conditional Image Genera	ation	
[12] Re-Imagen: Retrieval	-Augmented Text-to-Ima	age Generator
[13] InstantBooth: Persona	<u>alized Text-to-Image Ge</u>	neration without Test-Time
<u>Finetuning</u>		
[14] Subject-driven text-to	-image generation via ap	pprenticeship learning 36
n Concration"		00

Image credit: "DreamBooth: Fine Tuning Text-to-Image Diffusion Models for Subject-Driven Generation"

Single-Concept Customization

Input images

Pierre-Auguste Renoir

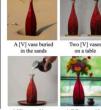
Input images

Input images

city of Versailles

A [V] backpack in Boston

Input images



Milk poured into a [V] vase A [V] vase with a colorful flower bouquet

A [V] vase in the ocean

A bear pouring from A transparent [V] teapot a [V] teapot with milk inside

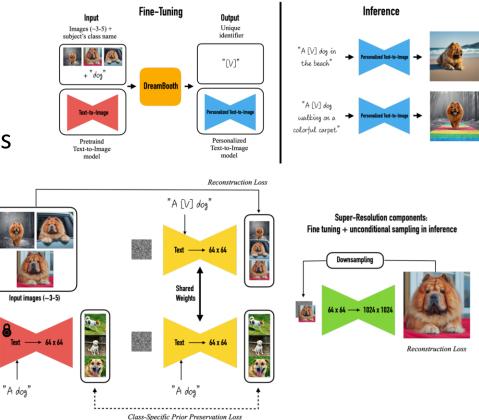
A [V] teapot pouring tea

Leonardo da Vinci

Expression modification ("A [state] [V] dog")

Single-Concept Customization

- Tuning unique identifier [V] for customized subject
- Originally generated samples to alleviate forgetting



Multi-Concept Customization

• Multi-concept customization [V1], [V2], ... from single image or multiple images

Without Test-Time Finetuning

A duck toy

- Retrieve-augmented/In-context generation
- Similar customization, but w/o test-time finetuning

A photo of V

A photo of

A photo of \hat{V} cat swimming in the a bucket swimming pool

Input 2 images of cat

Pablo Picasso Rembrandt **Rene Magritte** Vincent van Gogh A dog Top-down view Side view Bottom view Back view

Image credit: "Subject-driven text-to-image generation via apprenticeship learning" "InstantBooth: Personalized Text-to-Image Generation without Test-Time Finetuning"

Agenda

- Text-to-image (T2I) basics
- Aligning human intentions in T2I generation
 - Controllable generation
 - Editing
 - Better following prompts
 - Concept customization
- Summary and discussion

Discussion

Open-source v.s. Closed-source

Consuming and producing visual data: Understanding (I2T) and generation (T2I) loop

a close up of a dog near a bowl.

Thank you!