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A little bit history: from VQA to VLP, from pandemic back to normal

1:15 - 1:25 Opening Remarks presented by JJ Liu and Xiaodong He ( Slides , YouTube , Bilibili )

1:25 - 2:15 Visual QA and Reasoning presented by Zhe Gan ( Slides , YouTube , Bilibili ) 2 0 2 2
2:15 - 2:30 Coffee Break 2020 Morning Session

2:30-3:10 Visual Captioning presented by Luowei Zhou ( Slides , YouTube , Bilibili ) 9:00-9:15 Opening Remarks  [Eilibili, YouTube]

3:10 - 3:40 Text-to-image Synthesis presented by Yu Cheng ( Slides , YouTube , Bilibili ) 9:15-10:00 Overview of Image-Text Pre-training [Slides] [Bilibili, YouTube]

3:40-4:00 Coffee Break 10:00 - 10:15 Coffee Break & QA
4:00 - 5:00 Self-supervised Learning presented by Licheng Yu, Linjie Li and Yen-Chun Chen ( Slides 10:15 - 11:00 Unified Image-Text Modeling  [Slides] [Bilibili, YouTube]

11:00-11:45 Advanced Topics in Image-Text Pre-training [Slides] [Bilibili, YouTube]

11:45-12:00 Q&A

Prerecorded Sessions

Afternoon Session
4min Opening Remarks [Video]

13:00-13: 30 Overview of Video-Text Pre-training [ Slides] [Bilibili, YouTube]

50min Representations and Training Strategies for VLP [ 11 | . . X . e
13:30- 14:00 Learning from Multi-channel Videos: Methods and Benchmarks [ Slides] [Bilibili, YouTube]

Robustness, Efficiency and Extensions for VLP  [Video] [Slides]

14:00- 14: 30 Advanced Topics in Video-Text Pre-training [ Slides] [Bilibili, YouTube]

40min Video-and-Language Pre-training [ 10 ] 14:30 - 14:45 Coffee Break & QA

Introductionto VLN  [Video] [Slides]

14:45-15: 15 VLP for Image Classification [Slides] [Bilibili, YouTube]

>omin Generalizable VLN Methods  [/icc] [-0e:] 15:15-15:45  VLPfor Object Detection [Slides] [Bilibili, YouTube]
>8min Forward to Realistic VLN [Video] [ Slides] 15:45-16:15  Benchmarks for Computer Vision inthe Wild  [Slice<] [Bilibili, YouTube]
15min VLN Summary [ 11 ]

16:15-17:00 VLP for Text-to-Image Synthesis [Slides] [Bilibili, YouTube]

Live Session

17:00-17:15 Q&A

16:00-17:00 Panel Discussion  ((o)) LIVEonZoom [Video]
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eck out our survey paper

Vision-Language Pre-training:
Basics, Recent Advances, and Future Trends

Zhe Gan, Linjie Li, Chunyuan Li, Lijuan Wang, Zicheng Liu, Jianfeng Gao

Microsoft Corporation

{zhgan,linjli,chunyl,lijuanw,zliu, jfgao}@microsoft.com

VQA & Visual Reasoning
Q: What is the dog holding with its paws?
A: Frisbee.

Text-to-Image Retrieval
Query: A dog is lying on the grass next
to a frisbee.

Negative Images

Text-to-Video Retrieval
Query: A dog is lying on the grass next to
a frisbee, while shaking its tail.

Negative Videos

Video Question Answerin
Q: Is the dog perfectly still?
A: No.

Figure 1.2: Illustration of representative tasks from three categories of VL problems covered in this
vision tasks as VL problems , and video-text tasks .

paper: image-text tasks ,

Image Captioning
Caption: A dog is lying on the grass next
to a frishee.

Video Captioning
Caption: A dog is lying on the grass next
to a frisbee, while shaking its tail.

w

Image Classification
Labels: [dog, grass, frisbee]

Object Detection

Segmentation

Early VL
Models §2

VLP for
Image-Text §3

VLP for
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Video-Text §5
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VQA (Antol et al., 2015);
Show and Tell (Xu et al,, 2015)

- — SAN (Yang et al., 2016);
R BUTD (Anderson et al., 20182)
r = | Relation Net (Santoro et al., 2017);
Intra-modality Atiention ReGAT (Li et al., 2019d)

Transformer — MCAN (Yu et al, 2019c)

MCB (Fukui et al., 2016);
MEB (Yu et al., 2017)

NMN (Andreas et al., 2016b);
MMN (Chen et al., 2021b)

CLIP (Radford et al., 2021);

Dual Encoder — ALIGN (Jia et al., 2021)
- LXMERT (Tan and Bansal, 2019);
Two-stage UNITER (Chen et al., 2020d)
Fusion Encoder
ViLT (Kim et al., 2021);
End-to-end T ALBFF (Li et al., 2021a)
. 2 2a):
Big Models - CoCa (Yu et al., 2022a);

GIT2 (Wang et al., 2022d)

- PICa (Yang et al., 2022d);
LA LTS Flamingo (Alayrac et al., 2022)
. - OFA (Wang et al., 2022¢);

Wil LR D UniTAB (Yang et al., 2021c)

Robustness/Knowledge/Multilingual...

CLIP (Radford et al., 2021);
Florence (Yuan et al., 2021)

RegionCLIP (Zhong et al., 2022);
GLIP (Li et al., 2022h)

MaskCLIP (Zhou et al., 2022a);
GroupViT(Xu et al., 2022)

Knowledge  — K-Lite (Shen et al., 2022a)

CV in-the-Wild — ELEVATER (Li et al., 2022b)

Efficient Adaptation/Multilinguall...

HTM (Micch et al., 2019);
MIL-NCE (Miech et al., 2020)

. VideoBERT (Sun et al., 2019a);

Two-stage  |— ACtBERT (Zhu and Yang, 2020)
ClipBERT (Lei et al.,, 2021b);

{ Endtoend }— MERLOT (Zellers et al., 2021)

HERO (Li et al., 2020b);

—_— MERLOT-Reserve (Zellers et al,, 2022)

— TAN (Han et al., 2022);
__ VLPfor Video  — BridgePrompt (Li et al., 2022i)
VATT (Akbari et al,, 2021);
LAVENDER (Li et al., 2022g)

1

Transferring Image-text Models/
Analysis/Multilingual/...




Brand new design for this year’s tutorial

* Things are evolving quickly ...

From the LLM perspective, now we have
 ChatGPT, GPT-4 from OpenAl, PaLM, Bard from Google, LLaMA from Meta
* Alpaca, Vicuna, etc. from the open-source community
* And other LLMs from many startups

 From the computer vision perspective, now we have
 SAM, DINOv2, Stable Diffusion, Midjourney, etc.
 LLaVA, MiniGPT-4, etc.
e Visual ChatGPT, MMReACT, etc.

So, what’s new this year?



So, what’s new this year?

Q3: how to do image generation?

Image )
& . Produce visual data
Generation

LLM for language understanding and generation

a dog is running
? through the grass

General-purpose interface

Q4: how to train multimodal LLM?
Q5: how to chain multimodal experts

Image
Encoder with LLM?

Consume visual data

Q1: how to learn image representations?
Q2: how to extend vision models with more
flexible, promptable interfaces?




Agenda today

Part I: Visual and Vision-Language Pre-training
* To consume visual data, how to learn a strong image backbone

Part Il: Towards Generic Vision Interface
 How to design vision interface that is interactive and promptable

Part lll: Text-to-lmage Generation
 How to produce visual data that is also aligned with human intent

Part IV: Multimodal LLM
e How to make an LLM that can see and chat

Part V: Multimodal Agents
* How to chain multimodal experts with LLM to unlock new capabilities




Agenda today

e Part l: Visual and Vision-Language Pre-training
* To consume visual data, how to learn a strong image backbone



Supervised Learning Contrastive Language-lmage Pre-training
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Note that there is a vast amount of literature on
this topic. Due to time limit, in this tutorial, we will
use CLIP as the anchor point, and only select
papers based on our own preference and
judgement (and surely with our own bias). ©



Supervised learning

* Mapping an image to a discrete label which is associated to a visual concept
* Human annotation is expensive, and the labels can be limited

* Private datasets created by industrial labs:
e JFT-300M, JFT-3B!, 1G-3.6B!2l (called weakly-supervised pre-training in this case)
* Noisy weak supervision, can be very powerful for learning universal image embeddings
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[1] Scaling vision transformers, CVPR 2022
[2] Revisiting weakly supervised pre-training of visual perception models, CVPR 2022



Supervised learning

 Powered architectures ranging from AlexNet, ResNet, ViT, to Swin, and all the

modern vision backbones

pooling pooling
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Contrastive language-image pre-training

* Learning image representations from web-scale noisy text supervision
* Training: simple contrastive learning, and the beauty lies in large-scale pre-training
 Downstream: zero-shot image classification and image-text retrieval
* Image classification can be reformatted as a retrieval task via considering the
semantics behind label names

(1) Contrastive pre-training (2) Create dataset classifier from label text
Pepper the Text ‘
aussie pup > A photo of Text
Encoder l i i l g . [ Encoder
Ty T, | Ty Ty
—> 1 LTy | LTy Ty ) . LTy -
(3) Use for zero-shot prediction v v v ¥
Ll 1 LT LT | LTy | . |LTx T | T | T | | Ty
Image
—> I3 LT | 13Ty | I3Ty | . [13Ty |
Encoder mage I Ty | T2 | 1T - Ty
Encoder_} 1 R IS B e I Y O ] 1IN
Y
. . . K A photo of
—> Iy Ty [ InTy | IyTy | o | IyTy
a

[1] Learning transferable visual models from natural language supervision, ICML 2021
[2] Scaling up visual and vision-language representation learning with noisy text supervision, ICML 2021



Contrastive language-image pre-training

 The idea is simple, and can be dated back to a long while ago
* Inthe large-scale pre-training era: CLIPY) and ALIGN[2

10 A

Zero-Shot ImageNet Accuracy
N
o

0

)

.-—-""_'4

4X efficiency < 3X efficiency

—

—8— Bag of Words Contrastive ([CLIP)
Bag of Words Prediction
—8— Transformer Language Model
2M 33M 67M 134M 268M 400M

# of images processed

[1] Learning transferable visual models from natural language supervision, ICML 2021

[2] Scaling up visual and vision-language representation learning with noisy text supervision, ICML 2021

Data scale matters: Models are frequently trained with billions of image-text pairs
Batch size matters: 32k by default; Model size matters

Language is a stronger form of supervision than classi-
cal closed-set labels. Language provides rich information
for supervision. Therefore, scaling, which can involve in-
creasing capacity (model scaling) and increasing informa-
tion (data scaling), is essential for attaining good results in
language-supervised training.

CLIP [52] is an outstanding example of “simple algo-
rithms that scale well”. The simple design of CLIP al-
lows it to be relatively easily executed at substantially larger
scales and achieve big leaps compared to preceding meth-
ods. Our method largely maintains the simplicity of CLIP

Quote from the FLIP paper




How to improve CLIP

e Since the birth of CLIP, tons of follow-up works and applications

____________________

' Contrastive Learning 1 - 3. Objective functions

, Image Text i > 2. Model design
' Encoder Encoder |
Yoo TATTTTTTTITTIITIIIIATIIYT

| Images Texts :ﬁ > 1. Data scaling up

———————————————————————————



Data scaling up

* Reproducible scaling laws for CLIP training Data Arch. ImageNet VIAB+ COCO
* Open large-scale LAION-2B dataset CLIP[*5] WIT-400M L/14 755 558  61.1

* Pre-training OpenCLIP across various scales Ours LAION-2B L/14 752 546 711

Ours LAION-2B H/14 780 564 734

* DataComp: We know scale matters, how to further scale it up
* In search of the next-generation image-text datasets
* Instead of fixing the dataset, and designing different algorithms, the authors propose to
fix the CLIP training method, but select the datasets instead

Choose scale Select data Train Evaluate
————— | —
| | U
! | subset -

[ CommonPool e’

I '

__ ~ / ! ﬁ
hd., Candidate

Choose scale: L dataset Train a CLIP model Evaluate the model
small, medium, External data with a fixed architecture on 38 zero-shot
large or xlarge sources and hyper-parameters downstream tasks

[1] Reproducible scaling laws for contrastive language-image learning, CVPR 2023
[2] Datacomp: In search of the next generation of multimodal datasets, 2023



Model design: from the image side

* FLIP: Scaling CLIP training via masking
* Training: still use CLIP loss, without incorporating the MIM loss

* Trick: randomly masking out image patches with a high masking ratio, and only encoding
the visible patches

* Results: turns out this does not hurt performance, but improves training efficiency
* Training is done in 256 TPU-v3 cores, with LAION-400M for 6.4, 12.8, or 32 epochs

contrastive
loss

encode only the visible patches. We do not perform reconstructior training time (hours)

~

|
|
1
: 73 1
1
image encoder text encoder | 3.7 speedup
: % 724
2
. I &
visible patches text I 3 71
I g
! 2.0
I e
: I 8
masked image
: 69 1 —&—mask 0% (our CLIP repro.)
Figure 2. Our FLIP architecture. Following CLIP [52], we per- mask 50%
. . . . 1 —6—mask 75%
form contrastive learning on pairs of image and text samples. We I 68
randomly mask out image patches with a high masking ratio anc | 0 50 100 150 200 250
|
|
|
I

[1] Scaling language-image pre-training via masking, CVPR 2023



Model design: from the language side

* K-Lite: External knowledge

* The Wiki definition of entities (or, the so-called knowledge) can be naturally used together
with the original alt-text for contrastive pre-training

- Takoyaki
A ball-shaped Japanese
dumpling made of batter,
filled with diced octopus,

tempura scraps, pickled
. ginger, and green onion.

| Sashimi

A dish consisting of
thin slices or pieces of
raw fish or meat.

Figure 1: Motivating examples: knowledge
explains the content of the rare dish concepts.

Knowledge
Acquisition

Original Query
Dataset Construction

® ©

[
Language-lmage Learning

WORDNET:

B

Knowledge ionary

wikt

[
Knowledge-Augmented Language-lmage Learning

[1] K-lite: Learning transferable visual models with external knowledge, NeurlPS 2022

Enriching alt-text with entity descriptions
enhances performance.

Training Data | Method | ImageNet-1K | ICinW (20 datasets)

Dataset # Samples | | Zero-shot | Zero-shot Linear Probing Fine-tuning
ImaseNet-21K 13M (full) | UniCL 28.16 27.15 53.07 £4.15 55.96 +£250
g 13M (full) | K-LITE 30.23 33.44 53.92 + 105 57.81 + 148
14M (half) | UniCL 34.43 34.30 53.50 +222 56.45 £248
14M (half) | K-LITE 36.67 36.50 49.48 1223 55.88 + 164

YFCC-14M +
ImageNet2lk 1M (half) | K-LiTE® | 4236 3650  5428+3s 5211 40
27M (full) | UniCL 43.06 35.99 55.96 +1338 58.25 +298
27M (full) | K-LITE 45.67 38.89 57.06 +1.48 58.24 +236
15M (half) | UniCL 41.64 36.31 53.86 £2.73 59.04 £33
GCC-15M + 15M (half) | K-LITE 44.26 39.53 5591 +253 58.20 +3.39
ImageNet21K 1SM (halD | K-LiTe® 47.30 40.32 5738 +270  60.72 +229
28M (full) | UniCL 46.83 38.90 57.92 £331 60.99 274
28M (full) | K-LITE 48.76 41.34 58.56 +3.12 63.39 £ 174




Model design: improved interpretability

* STAIR: Learning Sparse Text and Image Representation in Grounded Tokens
* Mapping images and text to a high-dim sparse embedding space
* Each dimension in the sparse embedding is a (sub-)word in a large dictionary in which the
predicted non-negative scalar corresponds to the weight associated with the token
* Better performance than CLIP with improved interpretability

Table 1. Zero-shot text/image retrieval. Reporting recall@K on Flickr30K and COCO.

CLIP / ALIGN STAIR
(dense embedding) (sparse and interpretable embedding)
03 | tree COCO 5K Flickr30K
text — image image — text text — image image — text
8'2 z:st R@1 R@5 R@10 R@1 R@5 R@10 | R@l R@5 R@10 R@1 R@5 R@10
vs. CLIP 36.2 622 72.2 534 783 85.6 63.0 86.7 92.5 796 955 98.1
08 | branch STAIR | 41.1 65.4 75.0 577 80.5 87.3 ‘ 66.6 88.7 93.5 81.2 96.1 98.4
0.7 animal

= = e
slicing cakes lral_lIlJI_onallv
wedding

waves reintroduced receptions
Visual Text
Encoder Encoder

1

coasts
plumage sc NIg
“the bird is perched
on the tree”

=5 mssm  beaches
Original Caption: A seagull standing on  Bride and grooms arms cutting the wed-
the sand of a beach. ding cake with fruit on top.

|
|
I | O —
I 1 | : g"' |l subspecies 't':ﬁﬁ:'&'ul ad L - fli ckfmits"gmeu
! i’” @ S Ccake
:
|
|
|
|

[1] STAIR: Learning Sparse Text and Image Representation in Grounded Tokens, 2023



Model design: more modalities

* ImageBind: One embedding space to bind them all
* Linking all modalities (7 in this paper) into a common space
A pre-trained CLIP is used and kept frozen, i.e., learning other modality encoders to
align the CLIP embedding space

w ‘))) | ))) = Naturally Aligned

Images Videos Text Audio Depth Thermal IMU 7 Emergent Alignment
Web Image-Text w Depth Sensor Data Web Videos
B 2 000

Sheep basking in the sun

1) Cross-Modal Retrieval
Audio

0

Crackle of a Fire

<

Baby Cooing

Text

“A fire crackles while a pan of food is frying on
the fire.”

“Fire is crackling then wind starts blowing.”
“Firewood crackles then music...”

Images & Videos

“A baby is crying while a toddler is laughing.”
“A baby is laughing while an adult is laughing.”
“A baby laughs and something...”

[1] IMAGEBIND: One Embedding Space To Bind Them All, 2023



Objective function: fine-grained supervision

* FILIP: Fine-grained supervision
» Still dual encoder, not a fusion encoder
* But compute the loss by first computing the token-wise similarity, and then aggregating
the matrix by max pooling
* Learns word-patch alignment that is good for visualization

Raw image FILIP CLIP
. . ¢ ® 1
Cross-modal Late Interaction 1 Max Image-to-text Text-to-image 1
— Contrastive Contrastive ‘
G "

Token-wise Similarity 2 T T, = Ty L L o~ Iy |

- 0] r

Sy L sl ’ (3 PS )
2. Mean 1) T2 ° 3 ‘
Szl ‘
ey e : - |
(] Visual Token -» Image-to-text e §‘<§' N I TNI Ll ‘
-» Text-to-image .

(] TextualToken e (a) Balloon (5)

FILIP CLIP

hlll

Raw image
Image Encoder Text Encoder :

A @Iﬁlﬁ@ﬁ QOHDHHD Y
[ Llnear Projection Token Embedding
¥ BNy - ' o o e b o

0 @@@@@@@@@@@@@j

(c) Small white butterfly (5, 6, 7)
[1] FILIP: Fine-grained Interactive Language-Image Pre-Training, ICLR 2022



Objective function: adding a generative branch

* (CoCa: Contrastive Captioner
* Use mixed image-text and image-label (JFT-3B) data for pre-training
* But adding an additional generative branch for enhanced performance and enabling
new capabilities (image captioning and VQA)
e Similar to many vision-language models such as ALBEF, with the key difference that
CoCa aims to learn a better image encoder from scratch

image captioning &
multimodal representation

ation Multimodal
:3.1%‘-’Ls Text Decoder Multimodal
& classification alignment (Tl £
T T / "\ / Text Decoder
Image Unimodal D Image Image Unimodal Image Unimodal
Encoder Text Decoder Encoder Encoder Text Decoder Encoder Text Decoder
1 | | | 1 ! |
image text image image text image text
I Captioning &
Visual Recognition Crossmodal Alignment MulEnn?gzal Bfwtﬁ?:t‘a?nding
(single-encoder models) (dual-encoder models) (encoder-decoder models)
Pretraining Zero-shot, frozen-feature or finetuning

[1] Coca: Contrastive captioners are image-text foundation models, 2022



Objective function: adding a generative branch

 How about using the captioning loss alone?

* VirTex was proposed to learn image encoders via an image captioning loss, but the
scale is very small (COCO images)

* In CLIP, it was also shown contrastive pre-training is a much better choice

* InSimVLM, the authors also found that the learned image encoder was not
competitive than CLIP, that’s also why they later proposed CoCa

* |In Cap/CapPa, the authors argue that image captioners are scalable vision learners,
too. Captioning exhibits the same or better scaling behavior.

Method | Acc@l HEEEE oEEE
y v ¥
« { 4 T SimCLRv2 (Chen et al., 2020a) 79.8 [M,D] l Cross-entropy Loss ] (causal) [M,D] [ Cross-entropy Loss ]
T DINO (Caron et al., 2021 80.1 Cross-attn Cross-atin
5 onyNet Task: Image Captioning ( : ) T[ N, V] Self-attn mask ? [N, V] Self-attn mask
] 2c Caption CLIP (Radford et al., 2021) 85.4 |
Downstream Transfer y, Example: Object Detection ALIGN (Jla et al., 2021) 85.5 Vision Transformer u Vision Transformer L I |
< o SimVLM, 80.6 Transformer Decoder N Transformer Decoder “' I‘
ase .
aster cake f S' |
— ey imVLEMiage 82.3 : N
- SIMVLMyuge 83.6 I E3| 3|3 | G2 1S '
Figure 1: Learning visual features from language: First, "A smatll cow"
we jointly train a ConvNet and Transformers using image-  Typle 5: Ljinear evaluation on ImageNet classifi-
caption pairs, for the task of image captioning (top). Then, . d f-th . N v
we transfer the learned ConvNet to several downstream vi- cat101_1, compared to state-of-the-art representation Cap
sion tasks, for example object detection (bottom). learmng methods. \ g
CapPa

[1] Image Captioners Are Scalable Vision Learners Too, 2023
[2] VirTex: Learning Visual Representations from Textual Annotations, CVPR 2021
[3] SimVLM: Simple Visual Language Model Pretraining with Weak Supervision, ICLR 2022



Can CLIP be combined with other learning approaches?

Supervised
+ Learning ?

Contrastive Image-Only (Non-)
Language-Image - + Contrastive ?
Pre-training Learning

\WENGERIETE J
Modeling

Image-Only (Non-)
Contrastive
Learning

Masked Image — P,
Modeling ’




Can CLIP be combined with other learning approaches?

Contrastive

Language-Image
Pre-training




Noisy label+text supervision

* UniCL: Image-text-label space

* A principled way to use image-label and image-text data together
* A scaled-up version is the Florence model

Supervised
Learning

3 E ot g
A § g
U 1
I 7 -
I = I
N e e o o e e e e e e e ’ \

Learning a mapping function * CE

Language-Image

from image to label * SupCon

Pros: Discriminative visual
representations
Cons: Limited visual concepts

>
Text

1
. Awhite A dog Ablack  Two parrots |
| dog looking catis perching on |, Text
, sittingon bashfully  sleeping atree .
, acouch totheside ona branch
computer

Pros: Broad semantic coverage
Cons: Representations are not
discriminative enough

/Label Language-Image-Label Learning

Best of both world:

Discriminative visual representations and
Broad semantic coverage

[1] Unified contrastive learning in image-text-label space, CVPR 2022
[2] Florence: A new foundation model for computer vision, 2021



Noisy label+text supervision

* LiT: Locking the image encoder
* Use a pre-trained ViT-g/14 image encoder learned from JFT-3B (image-label data)
 Then make it open-vocabulary by learning an additional text tower (image-text data)
* Just teaches a text model to read out good representations from a pre-trained image
model for new tasks

1
) I Design choice comparison SOTA 0-shot comparison
Locked r d.."\ Unlocked : 'P ~  unlocked | (Data: yfce100m subset) (Data: private)
pre-trained ") pre-trained - ¥} from-scratch I o op === - =
. | o LiT Supervised fine-tuning
\.\ ..... ﬁ ..... T L 1 E 60 -
H . * - =
: I § Fine-tuned LiT
: | : : 2 50 851 )
@ : I C W ; 7
S |l 7: | 9 Lﬂ—[ﬁl P~ = - P~ : < “ From-scratch
E = | = = P E = | %ﬂ 80 1
: | : I 5 _CLIP
: I | = 30 CLIP ALIQN
T -J ............ I ' ; ; — 5 ; ' y '
T B S O L T : 0 250 500 750 1000 0 5 0 15 20
L u U u u u I Image-text pairs seen [M] Image-text pairs seen [B]
\ y |
|

[1] Lit: Zero-shot transfer with locked-image text tuning, CVPR 2022



Noisy label+text supervision

* MOFI: Learn image representations from noisy entity annotated images
* |2E data: The largest dataset of its kind in terms of the number of entities, 1 billion
images with 2 million entities, 66 times more than JFT-3B and IG-3.6B

Model GPR1200 ImageNet-ZS

mAP@1k (%) | Acc@1 (%)
CLIP-L/140penar [ 7] 72.19 15.27 Q47128 (Christmas tree) Q871329 (Chevrolet Silverado) Q4842083 (Bagot goat)
MOFI-L/14 86.15 77.17 ‘ R ) _
MOFI-H/14 86.66 78.46 o '” B\ B8

(a) Comparison of MOFI and CLIP on GPR1200 image retrieval and Ima-
geNet zero-shot classification tasks.

Dataset # Images |# Classes ]
ImageNet-1K [+ 1] 1.2M 1K
ImageNet-21K [40] 14M 21K
JFT-300M [4¢] 300M 18K
JFT-3B [7] 3B 30K
1G-3.6B [4] 3.6B 27K
I2E (Ours) 1.1B M

(b) I2E dataset and existing large-scale image classification datasets.

Table 1. MOFI is trained on the newly constructed Image-to-
Entities (I2E) dataset, which has 66x more classes than the previous
datasets. MOFI achieves significantly better performance on the
image retrieval tasks when compared with CLIP.

Figure 1. Examples of the I2E dataset. Each caption is formatted as Entity_id (Entity_name)."

[1] MOFI: Learning Image Representations from Noisy Entity Annotated Images, 2023



Noisy label+text supervision

* MOFI: Learn image representations from noisy entity annotated images
* For supervised learning, treat entities as labels (2M labels)
* Though classical, it’s very effective for image-to-image retrieval tasks
* For CLIP, treat entity names as free-form text, and enrich them with entity descriptions
* Similar to K-Lite, but in a much larger scale (28M vs. 1B)
 Combine supervised pre-training and CLIP for multi-tasking
e Strong performance when compared with DINOv?2

0,0,.,010,0,0,.. | = . [ 0,0,..,010,0,0, .. , .
= i Al o) B e S S ¥
a8 - a e B8 N an BN E ! 8 Ne
\ l‘ ‘ Shared | \ i \ I ; \
/ Image Encoder \ ﬂ;‘" Image Encoder \ Text Encoder \ Parameters I Image Encoder \ / Image Encoder “'\‘ I | Text Encoder \
i . : i 54 i ) l___‘_____‘___., i
Image Image Text . Image Image Text .
(Alt Text, Entity) (Alt Text, Entity)
Supervised Contrastive (CLIP) Multi-Task (MOFI)

[1] MOFI: Learning Image Representations from Noisy Entity Annotated Images, 2023
[2] Dinov2: Learning robust visual features without supervision, 2023



Can CLIP be combined with other learning approaches?
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A high-level recap of image-only (non-)contrastive learning

* SimCLR: A Simple Framework of Contrastive Learning of Visual Representations

* Given one image, two separate data augmentations are applied

* A base encoder is followed by a project head, which is trained to maximize agreement using a

contrastive loss (i.e., they are from the same image or not)

* The project head is thrown away for downstream tasks
* Nicely connected to mutual information maximization
* A caveat of these line of methods is the requirement of large batch size or memory bank

Representation

Xj
hi Z;

1 | Encoder | [T Dense Relu Dense -»[ ] —

Maximize

_:. Data aximiz
Augmentation similarity

Original _ﬂ ++—Encoder —_ L pense Relu Dense > 1] —
Image hi _
] z
Xj

T
Transformed Base Encoder Projection Head
Images () a()
Downstream
tasks

[1] A Simple Framework for Contrastive Learning of Visual Representations, ICML 2020
[2] Momentum Contrast for Unsupervised Visual Representation Learning, CVPR 2020
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Image-only (Non-)Contrastive Learning

* Recent SSL methods relieve the dependency on negative samples
 The use of negatives can be replaced by asymmetric architectures (BYOL, SimSiam),
dimension de-correlation (Barlow twins), and clustering (SWaV, DINO), etc.

similarity loss:
Q -pzlogpi
predictor h stop-grad -
softmax
encoder J encoder f student ggq 4, | teacher ot
- " (=) (%)
image T °

Figure 1. SimSiam architecture. Two augmented views of one
image are processed by the same encoder network f (a backbone
plus a projection MLP). Then a prediction MLP h is applied on one
side, and a stop-gradient operation is applied on the other side. The
model maximizes the similarity between both sides. It uses neither
negative pairs nor a momentum encoder.

Figure 2: Self-distillation with no labels. We illustrate DINO in
the case of one single pair of views (x1, x2) for simplicity. The
model passes two different random transformations of an input
image to the student and teacher networks. Both networks have
the same architecture but different parameters. The output of the
teacher network is centered with a mean computed over the batch.
Each networks outputs a K dimensional feature that is normalized
with a temperature softmax over the feature dimension. Their
similarity is then measured with a cross-entropy loss. We apply a
stop-gradient (sg) operator on the teacher to propagate gradients
only through the student. The teacher parameters are updated with
an exponential moving average (ema) of the student parameters.

[1] Bootstrap your own latent-a new approach to self-supervised learning, NeurlPS 2020

[2] Exploring simple siamese representation learning, CVPR 2021

[3] Variance-invariance-covariance regularization for self-supervised learning, ICLR 2022

[4] Barlow twins: Self-supervised learning via “ redundancy reduction, ICML 2021

[5] Unsupervised learning of visual features by contrasting cluster assignments, NeurlPS 2020
[6] Emerging properties in self-supervised vision transformers, ICCV 2021
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How to combine CLIP with image-only SSL?

* DeCLIP: supervision exists everywhere

» Self-supervised learning on each modality: Image (SimSam), Text (MLM)
e Multi-view supervision and Nearest-neighbor supervision

© Original Sup.

a cute white cat.
A

@ m Self-Sup. @ }S\S

cute white kitty. "
a cute white cat. |:

z{ Z{ v ZE
| -(©
el

“._;_—m""*‘:' :_"
(a) CLIP & ALIGN

Multi-View Sup. 3)

77 Nearest-Neighbor Sup.
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P I B | I P e P
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HBE 1 HENH BE ’/'5
ARNE =E 7B
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EA - [ - NN - P/
(b) DeCLIP

[1] Supervision exists everywhere: A data efficient contrastive language-image pre-training paradigm, ICLR 2022
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Combining vision-language and self-supervised
learning improves data efficiency significantly



How to combine CLIP with image-only SSL?

e SLIP: Self-supervision meets language-image pretraining
* Simply combine SimCLR and CLIP for model training
e SLIP outperforms CLIP on both zero-shot transfer and linear probe settings

Uncurated Data

Figure 2. Illustration of SLIP, our multi-task framework. An im-
age model has access to and can be trained with both language
supervision from captions and self-supervision on images.

[1] Slip: Self-supervision meets language-image pretraining, ECCV 2022

Zero-shot Transfer
0,

sSsL  NOT SUPPORTED

35 40 45
Linear Classification

+5.6%
cur I ——>>—

60 65 70 75
ImageNet Acc (%)

SLIP

Figure 1. SLIP pre-training on YFCC15M. Combining image-
only self-superivsion and image-text supervision simultaneously
improves zero-shot transfer and linear classification on ImageNet.



How to combine CLIP with image-only SSL

e xCLIP: Make CLIP non-contrastive using techniques from image-only SSL
* Without using negatives, ensure non-trivial solutions via sharpness and smoothness

regularization

 CLIP works under 512-dim, but nCLIP needs project each modality to 32k-dim

«—> attract <---»> distract

512A—dim 512;dirn f 32768-dim 3276§—dim \
7 O O—a1 - 00
0 S O I e, O I
Projection Projection Projection Projection
Language Image Language Image
Encoder Encoder Encoder Encoder
texts images texts images
CLIP k nCLIP )

Figure 1. Architecture comparison between CLIP and nCLIP.

Let p = softmax(g) g = Sqftma;_c(h_)
Lce = —p'log(q).

LEa = —pTlog(p), —LHE = f’TlOg(f_—"):

Lncrip = LcE + A1 - LEH — A2 - LHE, |

o = v = = P -

- 2 S a . 5 - b S & - 5 g ) H

22 f% T, ,1iEszsiE2Eiz;E 8 Y| Only nCLIP is not enough for

g E E g 3 E g £ 2 2 g 2 g 5 ' I = ¥ s
Modelu?uummu<>o&.’uméﬁi%m§omu g & 2 4 E| =

< strong performance, need to be

CLIP 61.2 79.7 50.6 23.7 56.5 159 5.8 46.4 27.6 54.7 71.3 48.9 10.5 37.3 91.3 24.5 39.7 13.1 31.6 9.1 50.0 45.0 32.4 12.8 53.0 49.1 45.4|40.3 g p 4
nCLIP 28.4 79.5 49.1 11.3 57.0 5.9 4.5 51.4 229 14.6 65.0 23.1 9.9 13.5 94.8 15.1 21.2 2.7 35.4 5.8 51.2 42.0 28.4 12.4 52.7 50.0 37.44/132.7 H 1
xCLIP 65.8 83.4 54.5 25.1 59.9 18.0 5.8 52.2 33.2 57.1 73.9 50.0 12.3 39.0 92.8 40.0 43.6 16.3 39.8 9.3 51.1 49.8 35.4 18.4 52.5 50.2 48.4/43.6 used togethe r Wlth CLI P’ I'e"

Table 1. Zero-shot classification. We report on a variety of classification benchmarks with ViT-B/16 pre-trained on IT35M. Detailed

XCLIP = CLIP + nCLIP.

protocols for each dataset strictly follow CLIP [/]. xCLIP achieves a consistent performance gain compared to CLIP in a wide range of
classification datasets. Best results of each column are bolded.

[1] Non-Contrastive Learning Meets Language-Image Pre-Training, CVPR 2023



Can CLIP be combined with other learning approaches?
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A high-level recap of masked image modeling

* BEIT: BERT Pre-Training of Image Transformers
» Before pre-training, learn an “image tokenizer” via VQ-VAE/GAN, where an image is
tokenized into discrete visual tokens
* Similar approaches have been used for image generation, such as DALLE, Parti.
* Randomly masking image patches, pre-train the model to predict masked visual tokens
* Can be understood as knowledge distillation between the image tokenizer and the BEIT
encoder, but the latter only sees partial of the image

i Unused During Reconstructed |
Dalakens i Pre-Training Image '
( 123 234 456 567 R /t g'», 9 §
| = ’ o !
. L 987 876 765 543 bl | - ! . .
‘T,’:,%';:' = — iz zzasoa ass | 77 | Doeodlr |- R R | Strong model finetuning performance
211 322;433 544 : L\\\\J‘ o e
3 r"v 4 234456 876 765 T
", €53 11 t 1 !
Plnt‘age - I Masked Image Modeling Head ]
atches ¥
- | . - i
TS (n5 }{n}) thuhlkj @
Clokutee BEIT Encoder
M:S"'"g 65 1| = DeiT (Training from scratch)
=" I == BEIT (Fine-tuning)
el sl el ] e =l el Position I
o|[1]1[2][s][a][s][e][7][&][2][10][11][12][13][14][15][1e : 60 r : : : :
- | Fate [+ e +"+]+H+M+[+‘ Mt‘hth Embedding 50 100 150 200 250 300
= atten | .. - -_—
MRS e e T | ENE Epochs

[1] BEIT: BERT Pre-Training of Image Transformers, ICLR 2022
[2] iBOT: Image BERT Pre-Training with Online Tokenizer, ICLR 2022



Masked autoencoders and masked feature prediction

* MAE: Using pixel values as targets also works great
e Alarge random subset of images (75%) is masked out
* The encoder is applied to visible patches, mask tokens are introduced after the encoder
* MAE pre-training is especially helpful for object detection and segmentation tasks

* MaskFeat: Other image features can be used as targets as well

ised INIK w/label 479 49.3
NS e Figure 2. MaskFeat pre-training. We randomly replace the in-

MoCov3 INIK 47.9 49.3 ) ) ) _
BEIiT INIK+DALLE 498 533 put space-time cubes of a video with a [MASK] token and di-
MAE INIK 503 533 rectly regress features (e.g. HOG) of the masked regions. After

. . . . . pre-training, the Transformer is fine-tuned on end tasks.
Table 4. COCO object detection and segmentation using a ViT
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[1] Masked Autoencoders Are Scalable Vision Learners, CVPR 2022
[2] Masked feature prediction for self-supervised visual pre-training., CVPR 2022



Potential problems with MIM

e Scaling properties of MIM is still not that clear yet
* MIM is scalable in terms of model size
* However, how about scaling data size like CLIP using billions of image-text pairs?
* There are some studies, but not much ([1] [2] [3] shown in the footnote)
« MIM is good for model finetuning, but does not learn a global image representation
* Roughly iBOT = DINO + BEIT, and then we also have DINOv2

Table 9: Effect of design choices of semantically
meaningful tokenization.

oo [ e s . Method Ly Licrs) SH k-NN Lin. Fin,

b B Lmim iBOT v v/ / 69.1 742815

/ g ] g L / /X 690 738 815

x~7 Kt~T 2 X - 95 298794
e e e O X - 443 600817

\U oF E " BEiT A X - 69 235814

E p— e o] DINO X 7 - 679 725806

@ epuasiq ol ke D AT - H BEIT+DINO A v - 480 62.7 81.2

O: standalone DINO (w/o mcrop, 300-epoch)
A: pre-trained DALL-E encoder

[1] On Data Scaling in Masked Image Modeling, 2022

[2] Delving Deeper into Data Scaling in Masked Image Modeling, 2023

[3] The effectiveness of MAE pre-pretraining for billion-scale pretraining, 2023
[4] iBOT: Image BERT Pre-Training with Online Tokenizer, ICLR 2022

[5] DINOv2: Learning Robust Visual Features without Supervision, 2023



Can CLIP be combined with other learning approaches?
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Shallow interaction of CLIP and MIM

* Turns out image features extracted from CLIP is a good target for MIM training
e Captures the semantics that is missing in MIM training

7
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[1] MVP: Multimodality-guided Visual Pre-training, ECCV 2022
[2] BEIT v2: Masked Image Modeling with Vector-Quantized Visual Tokenizers, 2022
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Approach 2 (BEIT v2): compress the
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the visual tokens, then perform
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Shallow interaction of CLIP and MIM

* This approach is further popularized by the EVA series of work

Scaling up
MIM Pre-training
(30M image data, 150 ep)

7N
A

Downstream Transfer

N\

Image Classification

* Video Action Classification

Object Detection
Instance Segmentation
Semantic Segmentation
Scaling up Larger CLIP
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Figure 1: Summary of CLIP models’ ImageNet-1K zero-shot
classification performance. The diameter of each circle corre-
sponds to forward GFLOPs x the number of training samples.

[1] EVA: Exploring the Limits of Masked Visual Representation Learning at Scale, CVPR 2023

[2] EVA-CLIP: Improved Training Techniques for CLIP at Scale, 2023

[3] EVA-02: A Visual Representation for Neon Genesis, 2023.
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Figure 3: Alternate learning of MIM and CLIP representations.
Starting with a off-the-shelf CLIP(e.g., OpenAl CLIP [95]), alternate
training of the pure MIM visual representations as well as vision-
language CLIP representations can improve both MIM and CLIP
performances in a bootstrapped manner. The MIM representations
can be used to fine-tune various downstream tasks while the (frozen)
CLIP representations enable modular, reusable and scalable next-
gen model design.



s a deeper integration of CLIP and MIM possible?

 Masked autoencoding does not help natural language supervision at scale

contrastive
= —» Contrastive Generative loss
. Loss
— Generative 1
it 1 1 1 :
Positional 1y 1 2 N image encoder text encoder
- Encoding
= - - Decoder
o Mask R Ty LT | LT, | | IyT,
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Pooling —

_@_ N Encoder ~ Pooling ——— — = — — — — — = Ty I'Ty | LTy Iy Ty

I

masked image

Positional InfoNGE | Figure 2. Our FLIP architecture. Following CLIP [52], we per-
Encoding oss form contrastive learning on pairs of image and text samples. We
randomly mask out image patches with a high masking ratio and
encode only the visible patches. We do not perform reconstruction
of masked image content.
Models Zero-shot Linear Probing Models Zero-shot Linear Probing
NAE - 339 MEAD _ 69.3 mask 50%  mask 75%
— CLIP 61.8 75.9 :
MEAL 525 GAP baseline 69.6 68.2
CLIP 297 52.6 CLIPMax 63.7 77.5
’ : MAE-CLIPgap 57.4 75.7 + MAE 694 67.9
MAE-CLIP 338 58.9 MAE-CLIPyax  60.9 76.6
\ J

Table 1: ImageNet classification with zero-shot transfer or Table 6: ImageNet classification after pretraining on web-
linear probing after pretraining on the CC dataset (11.3M crawled dataset (1.4B images). In the large scale regime,

images). MAE-CLIP significantly improves the classification self-supervision does not complement natural language super-
performance of CLIP in the small scale regime. vision.

(f) Reconstruction. Adding the MAE recon-
struction loss has no gain.

[1] Masked Autoencoding Does Not Help Natural Language Supervision at Scale, CVPR 2023
[2] Scaling language-image pre-training via masking, CVPR 2023



From masked image modeling to masked multimodal modeling

* BEIiT-3: BERT and BEiT can be incorporated

* Performing masked data modeling on both image/text and image-text data with a

Multiway transformer
* Shared self-attention layer with 3 FFN modality experts

Masked Data Modeling | jm--------- i _________

: Switching Modality Experts :

1 I

T ' V-FFN  L-FFN  VLFFN !

! Vision  Language VLo

. 1 Expert Expert Expert

BEIT-3 x|SR

(Multiway Transformer) S

:+
T T t Shared Multi-Head
Images Texts Imag e-Text Self-Attention

Pairs 1

Multimodal Input

Figure 2: Overview of BEIT-3 pretraining. We perform masked data modeling on monomodal (i.e.,
images, and texts) and multimodal (i.e., image-text pairs) data with a shared Multiway Transformer
as the backbone network.

[1] Image as a Foreign Language: BEIT Pretraining for All Vision and Vision-Language Tasks
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Can CLIP be combined with other learning approaches?
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Backbones other than ViT

* Besides ViT that has been scaled up to 22B, other backbones can also be

studied: ConNeXt-v2 & Internlmage
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[1] Internimage: Exploring Large-Scale Vision Foundation Models with Deformable Convolutions, CVPR 2023
[2] ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders, 2023
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A high-level summary

 We center around CLIP, and discussed how to train a strong image backbone as
the foundation

* We focus on image-level pre-training, not further into / -level pre-
training (e.g., ! , ), as they typically will use a pre-trained
image encoder at first hand

* We observe three high-level principles from the current literature
* Scaling: a good algorithm should be simple but also scale well
* Contrasting: From SimCLR to CLIP
* Masking: From BERT to BEIT



Future challenges

How to further scale up?
* Interms of both data scale and model scale

New model training paradigm?
* Simple algorithm that scales well and goes beyond CLIP and MIM

How to perform unified image-/region-/pixel-level pre-training?
* So that the model can have a holistic view of the image at different granularities

How to extend vision models with more flexible, promptable interfaces?
 How NLP concepts like in-context learning, chain-of-thoughts, prompting, emerging properties
can be exhibited in the CV context

How to train vision backbones with more innovative data?
* So that to unblock new model capabilities such as the ones demonstrated by GPT-4
* E.g., read a whole scanned paper and then summarize the paper in a few bullet points



Till now, we have discussed how to learn a strong image backbone

Consume visual data




More to come ...

Q3: how to do image generation?

Image )
& . Produce visual data
Generation

LLM for language understanding and generation

General-purpose interface

Q4: how to train multimodal LLM?
Q5: how to chain vision experts with
LLM?

Q2: how to extend vision models with more
flexible, promptable interfaces?




Thank you!
Any Questions?
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