Large Multimodal Models
Towards Building and Surpassing Multimodal GPT-4

June 2023

Chunyuan Li
Deep Learning Team
Microsoft Research, Redmond
https://chunyuan.li
Q1: how to learn image representations?
Q2: how to extend vision models with more flexible, promptable interfaces?

Q3: how to do image generation?

Q4: how to train multimodal LLM?
Q5: how to chain multimodal experts with LLM?
Outline

1. Background
 - Traditional Large Multimodal Models (LMM)
 - Multimodal GPT4

2. Pre-requisite: Instruction Tuning in Large Language Models

3. Instructed Tuned Large Multimodal Models
 - Open-Source Prototypes: LLaVA / MiniGPT4
 - Emerging Extensions
 - Benchmarking, Properties and Applications
1 Background:
Large Multimodal Models (LMM) & GPT4
Large Multimodal Models: Image-to-Text Generative Models

- **Model Architectures**
 - (Pre-trained) Image Encoder and Language Models
 - Trainable modules to connect to two modalities

A dog lying on the grass next to a frisbee
Large Multimodal Models: Image-to-Text Generative Models

- **Training Objective**
 - Cross-Attended Image-to-Text Generation
 - Autoregressive loss on *language output*

![Diagram of multimodal model](image)

- **Language Model**
 - **Visual Tokens**
 - **Text Tokens**

- **Tokens to Predict**
- **Tokens to Attend**

Next Token
Example 1: LMM with Image-Text Pairs

GIT

- Vision Encoder: Contrastive pre-trained: Florence/CLIP
- Language Model: From Scratch
- Connection Module: Pre-trained: FLAN-T5/OPT
- Q-Former: Lightweight Querying Transformer

BLIP2

- Vision Encoder: Contrastive pre-trained: EVA/CLIP
- Language Model: From Scratch
- Connection Module: Pre-trained: FLAN-T5/OPT
- Q-Former: Lightweight Querying Transformer

GIT: A Generative Image-to-text Transformer for Vision and Language
Blip-2: Bootstrapping language-image pre-training with frozen image encoders and large language models
Example 2: LMM with Interleaved Image-Text Data

- Flamingo:

<table>
<thead>
<tr>
<th>Language Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connection Module</td>
</tr>
<tr>
<td>Vision Encoder</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pre-trained: 70B Chinchilla</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perceiver Resampler</td>
</tr>
<tr>
<td>Gated Cross-attention + Dense</td>
</tr>
</tbody>
</table>

 Pre-trained: Nonormalizer-Free ResNet (NFNet)
Example 2: LMM with Interleaved Image-Text Data

- **Flamingo: Multimodal In-Context-Learning**

![Diagram of Flamingo: Multimodal In-Context-Learning](Diagram.png)
OpenAI MultiModal GPT-4

- Model Details: Unknown
- Capability: Strong zero-shot visual understanding & reasoning on many user-oriented tasks in the wild
- How can we build Multimodal GPT-4 like models?

GPT-4 visual input example, Extreme Ironing:

<table>
<thead>
<tr>
<th>User</th>
<th>What is unusual about this image?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Image](https://www.barnorama.com/wp-content/uploads/2016/12/03-Confusing-Pictures.jpg)

GPT-4

The unusual thing about this image is that a man is ironing clothes on an ironing board attached to the roof of a moving taxi.

GPT-4 visual input example, Chicken Nugget Map:

User Can you explain this meme?

Sometimes I just look at pictures of the earth from space and I marvel at how beautiful it all is.

GPT-4

This meme is a joke that combines two unrelated things: pictures of the earth from space and chicken nuggets.

The text of the meme suggests that the image below is a beautiful picture of the earth from space. However, the image is actually of chicken nuggets arranged to vaguely resemble a map of the world.

The humor in this meme comes from the unexpected juxtaposition of the text and the image. The text sets up an expectation of a majestic image of the earth, but the image is actually something mundane and silly.

GPT-4 Technical Report, OpenAI
Recap on Language Modeling: Large Language Models (LLM)

What's new?

- In-context-learning Chain-of-thoughts (CoT)
- Instruction-Following

Multimodal Space

- Flamingo
- BLIP2
- GIT
- ...
Pre-requisite:

Instruction Tuning in Large Language Models (LLM)
Instruction Tuning

CVPR is the premier annual computer vision event comprising the main conference and several co-located workshops and short courses. This year, CVPR will be single track such that everyone (with full passport registration) can attend everything.

• Task instructions are implicit.
• Individual models are trained, or multi-tasking without specifying the instructions
• Hard to generalize to new tasks in zero-shot

Hello, Vancouver
你好，温哥华

CVPR: top computer vision event, single-track, accessible to all.
Translate English into Simplified Chinese

Summarize in just 10 words to make the message even more brief and easier to remember.

Task instructions are explicit, expressed in natural language
• One single model is trained, multi-tasking with specified instructions
• Natural and easy to generalize to new tasks in zero-shot

Instruction Tuning

Input: Hello, Vancouver
Output: 你好，温哥华

CVPR is the premier annual computer vision event comprising the main conference and several co-located workshops and short courses. This year, CVPR will be single track such that everyone (with full passport registration) can attend everything.

CVPR: top computer vision event, single-track, accessible to all.
CVPR 2023 Visas
The CVPR'23 organizing committee deeply regrets that many members of our community could not receive visas to attend CVPR 2023. For several months, the organizers have actively raised concerns with Canadian immigration authorities (IRCC), government agencies, and politicians. In some cases, we have been successful in helping people obtain visas, but in many cases, our efforts were unsuccessful. The organizers acknowledge that the international representation of members from all over the world is what has made CVPR successful. We share in the frustration of those who were unable to attend. We continue to allow virtual to in-person registration switches for attendees who receive their visas before the conference.

"CVPR'23 visa issue: organizing committee works to solve and provide virtual and in-person registration switch services."
Self-Instruct Tuning

How to collect a diverse set of high-quality instructions and their responses?

- Human-Human: Collected from humans with high cost
- Human-Machine: A Strong LLM Teacher such as GPT3 and GPT4

Please generate new instructions that meet the requirements:

Seed Examples → In-Context Learning → New Machine-Generated Examples
Language Modeling: Large Language Models (LLM)

OpenAI

GPT-2 → GPT-3

What’s new?

In-context-learning
Chain-of-thoughts (CoT)

ChatGPT
InstructGPT

In-context-learning
Chain-of-thoughts (CoT)
Instruction-Following

GPT-4

In-context-learning
Chain-of-thoughts (CoT)
Instruction-Following
Multimodal Input with image

Open Source Community

LLaMA

Alpaca
Vicuna
GPT4-Alpaca
Tulu

Instruction Tuning with Open-Source LLMs

Self-Instruct with Strong Teacher LLMs & Mixed Human Data

<table>
<thead>
<tr>
<th>LLaMA</th>
<th>Alpaca</th>
<th>Vicuna</th>
<th>GPT4-Alpaca</th>
<th>...</th>
<th>Tulu</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data Source</th>
<th>GPT-3.5</th>
<th>ShareGPT (Human & GPT)</th>
<th>GPT-4 (text-only)</th>
<th>...</th>
<th>Mixed Data</th>
</tr>
</thead>
</table>

| Instruction-following Data (#Turns) | None | 52K (~150K conversions) | 52K | ... |

How Far Can Camels Go? Exploring the State of Instruction Tuning on Open Resource
Results on Chatbot

Evaluation Metric: Ask GPT-4 to rate the two model responses (1-10), then compute the ratio, i.e. relative score

Findings:
- A VERY CONSISTENT Evaluation Metric!
- Opensourced Chatbots mimicked commercial ones
Large Multimodal Models

-- Building multimodal gpt4 with open-source resources

LLaVA as a running example in this lecture
• Data
• Model
• Performance
Visual Instruction Tuning with GPT-4

Haotian Liu*, Chunyuan Li*, Qingyang Wu, Yong Jae Lee (* Equal contribution)

[Image of LLaMA, Alpaca, and Vicuna with their respective instruction-following data]

Self-Instruct with Strong Teacher LLMs

| Large Language and Vision Assistant
<table>
<thead>
<tr>
<th>Instruction-following Data</th>
<th>Teacher</th>
<th>Instruction-following Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>LLaMA</td>
<td>GPT-3.5</td>
</tr>
<tr>
<td>ShareGPT (Human & GPT)</td>
<td>Alpaca</td>
<td>GPT-4</td>
</tr>
<tr>
<td>52K</td>
<td>Vicuna</td>
<td>GPT-4-LLM (text-only)</td>
</tr>
<tr>
<td>700K (70 conversions)</td>
<td>GPT-4</td>
<td>LLaVA (text-only)</td>
</tr>
</tbody>
</table>
| 158K multimodal instruction following data (First & High Quality)
| Multimodal Chatbot |

https://llava-vl.github.io/
GPT-assisted Visual Instruction Data Generation

- Rich Symbolic Representations of Images
- In-context-learning with a few manual examples

→ Text-only GPT-4

Context type 1: Captions
A group of people standing outside of a black vehicle with various luggage. Luggage surrounds a vehicle in an underground parking area. People try to fit all of their luggage in an SUV. The sport utility vehicle is parked in the public garage, being packed for a trip. Some people with luggage near a van that is transporting it.

Context type 2: Boxes
person: [0.681, 0.242, 0.774, 0.694], person: [0.63, 0.222, 0.686, 0.516], person: [0.444, 0.233, 0.487, 0.34], backpack: [0.384, 0.696, 0.485, 0.914], backpack: [0.755, 0.413, 0.846, 0.692], suitcase: [0.758, 0.413, 0.845, 0.69], suitcase: [0.1, 0.497, 0.173, 0.579], bicycle: [0.282, 0.363, 0.327, 0.442], car: [0.786, 0.25, 0.848, 0.322], car: [0.783, 0.27, 0.827, 0.335], car: [0.86, 0.254, 0.891, 0.3], car: [0.261, 0.101, 0.787, 0.626]
GPT-assisted Visual Instruction Data Generation

Three type of instruction-following responses

Response type 1: conversation
Question: What type of vehicle is featured in the image?
Answer: The image features a black sport utility vehicle (SUV).
Question: Where is the vehicle parked?
Answer: The vehicle is parked in an underground parking area, likely in a public garage.
Question: What are the people in the image doing?
Answer: The people are trying to fit all of their luggage into the SUV, likely preparing for a trip.

Response type 2: detailed description
The image is an underground parking area with a black sport utility vehicle (SUV) parked. There are three people in the scene, with one person standing closer to the left side of the vehicle, another person in the middle, and the third person on the right side. They are all working together to pack their luggage into the SUV for a trip.
In the parking area, various luggage items are scattered around the vehicle. There are two backpacks, one located near the left rear wheel and the other closer to the right side of the vehicle. Additionally, there are two suitcases, one on the right side of the car and another further away near the center of the parking area. A bicycle can also be seen on the left side of the vehicle.
Other cars are parked around the main SUV, with one car positioned behind it and slightly to the left, another behind and slightly to the right, and the third car further behind on the right side.

Response type 3: complex reasoning
Question: What challenges do these people face?
Answer: In the image, a group of people is standing outside a black SUV in a parking area, surrounded by various pieces of luggage, including suitcases and backpacks. They are facing the challenge of fitting all their luggage into the black SUV. There are multiple suitcases and backpacks to be packed, which suggests that the group has a significant amount of belongings to accommodate. They might have to strategize and arrange the luggage efficiently to ensure that everything fits properly into the vehicle. Additionally, they need to consider the comfort of the passengers and visibility while driving, so the placement of the luggage must not obstruct the driver’s view or make the passengers uncomfortable during the trip.
LLaVA: Large Language-and-Vision Assistant

- **Architecture**

- **Two-stage Training**

 - **Stage 1: Pre-training for Feature Alignment.** Only the projection matrix is updated, based on a subset of CC3M.

 - **Stage 2: Fine-tuning End-to-End.** Both the projection matrix and LLM are updated

 - **Visual Chat:** Our generated multimodal instruction data for daily user-oriented applications.

 - **Science QA:** Multimodal reasoning dataset for the science domain.
Visual Chat: Towards building multimodal GPT-4 level chatbot

An evaluation dataset with 30 unseen images, 90 new language-image instructions

Overall, LLaVA achieves 85.1% relative score compared with GPT-4
Science QA: New SoTA with the synergy of LLaVA with GPT-4

- LLaVA alone achieves 90.92%
- We use the text-only GPT-4 as the judge, to predict the final answer based on its own previous answers and the LLaVA answers.
- This "GPT-4 as judge" scheme yields a new SOTA 92.53%
- GPT-4 is an effective model ensemble method
<table>
<thead>
<tr>
<th>User</th>
<th>LLaVA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>The unusual aspect of this image is a man ironing clothes on the back of a minivan or van. This is not a typical place to perform this activity, as one would usually iron clothes in a more stationary and safe location, such as a home, using a regular ironing board. The scene depicted in the image is peculiar as it involves a makeshift ironing setup on a vehicle, which can be both unsafe and unconventional. Additionally, it is not clear how the man is able to maintain balance and stability while ironing clothes in such an unstable environment.</td>
</tr>
</tbody>
</table>

[Start a new conversation, and clear the history]

<table>
<thead>
<tr>
<th>User</th>
<th>LLaVA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>The image depicts a man standing on top of a yellow SUV in a busy city street. He is holding a portable ladder, seemingly ironing clothes while standing on the vehicle. Around the scene, there are other cars, a traffic light, and a fire hydrant. Additionally, there are two other people in the vicinity, one close to the man on the car and another further away. The man on the ladder appears to be attracting attention due to his unconventional choice of ironing his clothes on top of a moving car. The city street around him is bustling with activity, adding to the unique nature of the scene.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>User</th>
<th>GPT-4 [34]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>The unusual thing about this image is that a man is ironing clothes on an ironing board attached to the roof of a moving taxi.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>User</th>
<th>BLIP-2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a man is sitting on the back of a yellow cab</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>User</th>
<th>OpenFlamingo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>The man is drying his clothes on the hood of his car.</td>
</tr>
</tbody>
</table>
Example 2: Chicken Nugget Map

Sometimes I just look at pictures of the earth from space and I marvel at how beautiful it all is.

User: Can you explain this meme in detail?
LLaVA:
The meme in the image is a creative and humorous take on food, with a focus on chicken nuggets, as the center of the universe. The meme begins with the phrase "Sometimes I just look at pictures of the Earth from space and I marvel at how beautiful it all is..." The main image features a tray of cooked chicken nuggets, with the chicken pieces positioned to resemble the continents and islands on a world map. The meme playfully suggests that the chicken nuggets represent the Earth, and the various locations depicted in the photo are actually chicken nugget versions of different places. The punchline of the meme appears in smaller text at the bottom, reading "I mean, it’s not the real Earth, but how beautiful it is all is." This lighthearted and entertaining meme combines food and humor, using the image of chicken nuggets to create a funny and imaginative representation of the world.

User: Can you explain this meme?
GPT-4 [32]: This meme is a joke that combines two unrelated things: pictures of the earth from space and chicken nuggets. The text of the meme suggests that the image below is a beautiful picture of the earth from space. However, the image is actually of chicken nuggets arranged to vaguely resemble a map of the world. The humor in this meme comes from the unexpected juxtaposition of the text and the image. The text sets up an expectation of a majestic image of the earth, but the image is actually something mundane and silly.

User: Can you explain this meme in detail?
BLIP-2: sometimes i just look at pictures of the earth from space and marvel how beautiful it is

User: Can you explain this meme in detail?
OpenFlamingo: It’s a picture of a chicken nugget on the International Space Station.
Who will be interested in the content in this image?

Example 1: CVPR & Vancouver

Individuals interested in the content of this image might include those who are familiar with the city of Vancouver, Canada, or are interested in traveling there. Additionally, people involved in the technology or computer industry, as well as those interested in artificial intelligence and its applications, may find the image intriguing. This is because the image features an attractive design with a blue logo that has the word "Vancouver" on it, suggesting a connection to the city or a product related to it. The presence of a laptop in the image might also connect to the tech or computer industry, possibly indicating a Vancouver-based company or an event taking place in the city.
The image features a logo for "Computer Vision in the Wild," which is likely an educational or research program focused on computer vision and its applications in a wild setting. The logo consists of a large letter "C" with a smaller letter "v" on top of it, standing for "Computer Vision." The rest of the logo is not disclosed, as the picture is only showing a portion of the design. This image might represent a program or project related to the field of computer vision and how it can be used in natural environments.
Strong OCR Ability

Example 3: LLaVA

In the photo, there is written "Llava" which is presumably an abbreviation for a location or other identifier.
More Modalities (Beyond VL)

- ChatBridge: Bridging Modalities with Large Language Model as a Language Catalyst
- PandaGPT: One Model To Instruction-Follow Them All
- SpeechGPT: Empowering large language models with intrinsic cross-modal conversational abilities
- X-LLM: Bootstrapping Advanced Large Language Models by Treating Multi-Modalities as Foreign Languages
Multitask Instruct with Established Academic Datasets/Tasks

- MultInstruct: Improving Multi-Modal Zero-Shot Learning via Instruction Tuning
- mPlug-Owl: Modularization empowers large language models with multimodality
- InstructBLIP: Towards general-purpose vision-language models with instruction tuning
- Multimodal-gpt: A vision and language model for dialogue with humans
- Instruction-ViT: Multi-Modal Prompts for Instruction Learning in ViT

Two existing purposes for Instruct Tuning:
- User-oriented tasks: Daily conversation
- Academic tasks: Existing datasets
MultiModal In-Context Learning

- Otter: A Multi-Modal Model with In-Context Instruction Tuning
- M3IT: A Large-Scale Dataset towards Multi-Modal Multilingual Instruction Tuning
- MetaVL: Transferring In-Context Learning Ability From Language Models to Vision-Language Models
Parameter-Efficient Training

- **LLaMA-Adapter V2**: Parameter-Efficient Visual Instruction Model
- **Cheap and Quick**: Efficient Vision-Language Instruction Tuning for Large Language Models

\[\text{LLaMA-Adapter V2: 14M parameters} \]

\[\text{LAVIN: 3.8M parameters} \]

- **QLoRA**: Efficient Finetuning of Quantized LLMs

Finetuning 65B LLaMA for 24 hours on a single GPU, reaching 99.3% of the performance level of ChatGPT
Evaluations

- Evaluating **Object Hallucination** in Large Vision-Language Models
- On Evaluating **Adversarial Robustness** of Large Vision-Language Models
- On the Hidden Mystery of **OCR** in Large Multimodal Models
- LAMM: Language-Assisted Multi-Modal Instruction-Tuning Dataset, Framework, and **Benchmark**

Performance Comparison

<table>
<thead>
<tr>
<th>Task</th>
<th>BLIP-2 OPT6.7b</th>
<th>BLIP-2 FlanT5_{XXL}</th>
<th>OpenFlamingo</th>
<th>LLaVA</th>
<th>MiniGPT4</th>
<th>mPLUG-Owl</th>
<th>Supervised-SoTA</th>
</tr>
</thead>
<tbody>
<tr>
<td>OCR</td>
<td>62.12</td>
<td>63.74</td>
<td>56.68</td>
<td>53.30</td>
<td>40.12</td>
<td>61.79</td>
<td>84.83</td>
</tr>
<tr>
<td>OCR + Reasoning</td>
<td>7.31</td>
<td>13.59</td>
<td>11.28</td>
<td>10.37</td>
<td>7.82</td>
<td>16.03</td>
<td>72.75</td>
</tr>
</tbody>
</table>
Applications

- PathAsst: Redefining Pathology through Generative Foundation AI Assistant for Pathology
- PMC-VQA: Visual Instruction Tuning for Medical Visual Question Answering
- LLaVA-Med: Training a Large Language-and-Vision Assistant for Biomedicine in One Day

![Diagram showing applications of LLaVA and LLaVA-Med.](image)}
Are we close or surpassing GPT-4?
In terms of prototyping new capabilities

A large gap remains...
In terms of scaling the capability
Strong abilities in

- Reading multiple high-resolution images, long sequence
- Responding with domain knowledge
What can we do next as a sustainable research community?

- Industry: Scaling of data/model, New emerging properties etc
- University Labs: Prototypes for new functionalities, Evaluation

Summary:

- Strong capabilities of LMM
- Instruction Tuning from Language to Multimodal
 - Open-Source Prototypes: LLaVA / MiniGPT4
 - Emerging Extensions
 - Benchmarking, Properties and Applications

CVPR2023 Tutorial: Recent Advanced in Vision Foundation Models
https://vlp-tutorial.github.io