Video-Text Pre-training

Kevin Lin, Linjie Li, Chung-Ching Lin
6/19/2022
Pretrain-and-finetune paradigm

- Pre-train on **large** amounts of datasets is very helpful for performance improvement on target tasks with **small** datasets.
Evolution of Video-Text Pre-training

Representative Video-Text Models until CVPR 2021

Many more methods have been proposed since then ...
Comprehensive Benchmarks

VALUE (Li et al. '21)

Comprehensive Image-Text Models

ClipsBERT (Lei et al. '21)
Clip4Clip (Luo et al. '21)
ClipsCaption (Tang et al. '21)
Flamingo (Alayrac et al. '22)

Transfer Image-Text Models

GIT (Wang et al. '22)
Clip4Clip (Wang et al. '21)
Clip4Caption (Akbari et al. '21)

Modeling Multi-channel Videos

HERO (Li et al. '20)
HiT (Buch et al. '22)
MMT (Gabeur et al. '20)
MV-GPT (Seo et al. '22)

Probing Analysis

Contrast Sets (Park et al. '22)
ATP (Luo et al. '21)
HD-VILA (Xue et al. '22)

Enhanced Pre-training Data

Frozen (Bain et al. '21)
MERLOT (Zeller et al. '21)
HD-VILA (Xue et al. '22)

Advanced Pre-training Tasks

Support-Set (Patrick et al. '20)
VIOLET (Fu et al. '21)
OA-Trans (Wang et al. '22)
ALPRO (Li et al. '22)
BridgeFormer (Ge et al. '21)

Applications to Video Understanding

VideoCLIP (Xu et al. '20)
TACo (Yang et al. '21)
ActionCLIP (Wang et al. '21)
EfficientPrompt (Ju et al. '21)
Bridge-Prompt (Li et al. '22)
P3IV (Zhao et al. '22)

More Languages

Uni-Percyever (Zhu et al. '22)
MMP (Huang et al. '21)
VICTOR (Lei et al. '21)
SkillNet (Dai et al. '22)

Unified Modeling

LAVENDER (Li et al. '22)

Pioneering work in Video-Text Pre-training

VideoBERT (Sun et al. '19)
UniVL (Luo et al. '20)
HTM (Miech et al. '19)
MIL-NCE (Miech et al. '20)
Agenda

Overview of Video-Text Pre-training

Learning from Multi-channel Videos: Methods and Benchmarks

Advanced Topics in Video-Text Pretraining
Overview of Video-Text Pre-training

Kevin Lin
Pioneering work in Video-Text Pre-training

- **VideoBERT** (Sun et al. '19)
- **UniVL** (Luo et al. '20)
- **HTM** (Miech et al. '19)
- **MIL-NCE** (Miech et al. '20)

Enhanced Pre-training

- **Frozen** (Bain et al. '21)
- **GIT** (Wang et al. '22)
- **MERLOT** (Zeller et al. '21)
- **HD-VILA** (Xue et al. '22)

Advanced Pre-training Tasks

- **Support-Set** (Patrick et al. '20)
- **OA-Trans** (Wang et al. '22)
- **ALPRO** (Li et al. '22)
- **BridgeFormer** (Ge et al. '22)

Comprehensive Benchmarks

- **VALUE** (Li et al. '21)
- **Merlot** (Zeller et al. '21)
- **Merlot Reserve** (Zeller et al. '22)
- **Noise Estimation** (Amrani et al. '20)

Transfer Image-Text Models

- **ClipBERT** (Lei et al. '21)
- **Clip4Clip** (Luo et al. '21)
- **Clip4Caption** (Tang et al. '21)
- **Flamingo** (Alayrac et al. '22)

Probing Analysis

- **Contrast Sets** (Park et al. '22)
- **Probing Analysis** (Buch et al. '22)
- **Frozen** (Bain et al. '21)
- **GIT** (Wang et al. '22)

Modeling Multi-channel Videos

- **VAT** (Akbari et al. '21)
- **MV-GPT** (Seo et al. '22)
- **AVLNet** (Rouditchenko et al. '21)
- **HERO** (Li et al. '20)
- **HiT** (Liu et al. '21)
- **MMT** (Gabeur et al. '20)
- **VideoCLIP** (Xu et al. '20)

Applications to Video Understanding

- **EfficientPrompt** (Ju et al. '21)
- **MMV** (Alayrac et al. '20)
- **TACo** (Yang et al. '21)
- **ActionCLIP** (Wang et al. '21)
- **Bridge-Prompt** (Han et al. '22)
- **ATP** (Buch et al. '22)
- **TAN** (Han et al. '22)
- **CLAP** (Xu et al. '22)
- **TACo** (Yang et al. '21)

More Languages

- **TAN** (Han et al. '22)
- **MMP** (Huang et al. '21)
- **VICTOR** (Lei et al. '21)
- **Tencent-MSVE** (Zeng et al. '22)
- **BridgePrompt** (Li et al. '22)
- **BridgeFormer** (Li et al. '22)
- **SkillNet** (Dai et al. '22)

Unified Modeling

- **UniPerceiver** (Zhu et al. '22)
- **LAVENDER** (Li et al. '22)
- **HiT** (Liu et al. '21)
- **Clap** (Xu et al. '22)
- **UniVL** (Luo et al. '20)
- **HTM** (Miech et al. '19)
- **MIL-NCE** (Miech et al. '20)

VideoCLIP (Xu et al. '20)
Outline

• Data and challenges
• Pioneer work in video-text pre-training
• Advanced pre-training tasks
• Transferring image-text model
Video-and-Language Pre-training

• “Free” annotations become accessible (i.e., subtitles or ASR transcripts)

Figure credit: Making Scallion Pancake Beef Rolls: https://www.youtube.com/watch?v=vTmgLKtx49Y
Slide credit: CVPR 2021 VQA2VLN Tutorial
Video-and-Language Pre-training

• Paired video clips and subtitles

“Keep rolling tight and squeeze the air out to its side and you can kind of pull a little bit.”

Figure credit: https://ai.googleblog.com/2019/09/learning-cross-modal-temporal.html
Slide credit: CVPR 2021 VQA2VLN Tutorial
Evolution of Video-and-Language Datasets

Credit: CVPR 2021 VQA2VLN Tutorial
Evolution of Video-and-Language Datasets

Merlot: Multimodal neural script knowledge models, NeurIPS 2021
HowTo100M

• 136M video clips from YouTube videos
• Each clip is paired with an automatically transcribed narration
• 23K activities

HowTo100M: Learning a Text-Video Embedding by Watching Hundred Million Narrated Video Clips, ICCV 2019
Challenges in training data

- Noisy transcript (automatically generated with ASR tools)
- Constrained domains (instruction videos)
- Temporally misaligned
- Computing resources demanding
now I'm just kind of grilling these tomatoes in this pan I want to get the maximum flavor usually you always use tomatoes raw as it but I just want to add that little dimension of cooked a slightly charged tomatoes yum!

Grill the tomatoes in a pan and then put them on a plate.

Language styles are different!

Examples from Youcook dataset: Towards Automatic Learning of Procedures From Web Instructional Videos, AAAI 2018
Recent Data Sources

• Researchers have been working on collecting better quality (well-aligned) data for the pre-training.

Example from shutterstock. Link: Smiling Beautiful Family Four Play Catch Stock Footage Video (100% Royalty-free) 1058262028 | Shutterstock
WebVid-2M & WebVid-10M

- Well-aligned video-text pairs from high-quality video sources

<table>
<thead>
<tr>
<th>dataset</th>
<th>domain</th>
<th>#clips</th>
<th>avg dur. (secs)</th>
<th>#sent</th>
<th>time (hrs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPII Cook [47]</td>
<td>cooking</td>
<td>44</td>
<td>600</td>
<td>6K</td>
<td>8</td>
</tr>
<tr>
<td>TACos [44]</td>
<td>cooking</td>
<td>7K</td>
<td>360</td>
<td>18K</td>
<td>15.9</td>
</tr>
<tr>
<td>DideMo [3]</td>
<td>flickr</td>
<td>27K</td>
<td>28</td>
<td>41K</td>
<td>87</td>
</tr>
<tr>
<td>MSR-VTT [65]</td>
<td>youtube</td>
<td>10K</td>
<td>15</td>
<td>200K</td>
<td>40</td>
</tr>
<tr>
<td>Charades [53]</td>
<td>home</td>
<td>10K</td>
<td>30</td>
<td>16K</td>
<td>82</td>
</tr>
<tr>
<td>LSMDC15 [46]</td>
<td>movies</td>
<td>118K</td>
<td>4.8</td>
<td>118K</td>
<td>158</td>
</tr>
<tr>
<td>YouCook II [70]</td>
<td>cooking</td>
<td>14K</td>
<td>316</td>
<td>14K</td>
<td>176</td>
</tr>
<tr>
<td>ActivityNet [24]</td>
<td>youtube</td>
<td>100K</td>
<td>180</td>
<td>100K</td>
<td>849</td>
</tr>
<tr>
<td>CMD [5]</td>
<td>movies</td>
<td>34K</td>
<td>132</td>
<td>34K</td>
<td>1.3K</td>
</tr>
<tr>
<td>WebVid-2M</td>
<td>open</td>
<td>2.5M</td>
<td>18</td>
<td>2.5M</td>
<td>13K</td>
</tr>
<tr>
<td>HT100M [37]</td>
<td>instruction</td>
<td>136M</td>
<td>4</td>
<td>136M</td>
<td>134.5K</td>
</tr>
</tbody>
</table>

Frozen in Time: A Joint Video and Image Encoder for End-to-End Retrieval, ICCV 2021
Scale It Up

• Collect larger scale, more diverse videos from YouTube

YT-Temporal 180M (NeurIPS21):
30% of videos are about local news & monetized contents

YT-Temporal 1B (CVPR22):
Scale it up in terms of video domains and # videos

HD-VILA-100M (CVPR22):
High-resolution videos (720p)
The more the better?

- Researchers are exploring to use a small subset of data for domain-specific pre-training
The more the better?

• VideoCC3M: Mining audio-video clips

<table>
<thead>
<tr>
<th>Pretraining Data</th>
<th>Modality</th>
<th># Caps</th>
<th>R@1</th>
<th>R@5</th>
<th>R@10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finetuned</td>
<td>V</td>
<td>-</td>
<td>30.2</td>
<td>60.7</td>
<td>71.1</td>
</tr>
<tr>
<td>HowTo100M [55]</td>
<td>V</td>
<td>130M</td>
<td>33.1</td>
<td>62.3</td>
<td>72.3</td>
</tr>
<tr>
<td>VideoCC3M</td>
<td>V</td>
<td>970K</td>
<td>35.0</td>
<td>63.1</td>
<td>75.1</td>
</tr>
<tr>
<td>VideoCC3M</td>
<td>A+V</td>
<td>970K</td>
<td>35.8</td>
<td>65.1</td>
<td>76.9</td>
</tr>
<tr>
<td>Zero-shot</td>
<td>V</td>
<td>130M</td>
<td>8.6</td>
<td>16.9</td>
<td>25.8</td>
</tr>
<tr>
<td>HowTo100M [55]</td>
<td>V</td>
<td>970K</td>
<td>18.9</td>
<td>37.5</td>
<td>47.1</td>
</tr>
<tr>
<td>VideoCC3M</td>
<td>A+V</td>
<td>970K</td>
<td>19.4</td>
<td>39.5</td>
<td>50.3</td>
</tr>
</tbody>
</table>

Table 2. Effect of pretraining data on text-video retrieval for the MSR-VTT dataset. # Caps: Number of unique captions. Training on VideoCC3M provides much better performance than Howto100M, with a fraction of the dataset size (VideoCC3M has only 970K captions and 6.3M clips compared to the 130M clips in HowTo100M). The performance boost is particularly large for the zero-shot setting.
Outline

• Data and challenges
• Pioneer work in video-text pre-training
• Advanced pre-training tasks
• Transferring image-text model
Most existing approaches can be roughly classified into two categories:

Dual Encoder
- Textual Encoder
- Visual Encoder
- Dot product or Cosine similarity

Fusion Encoder
- Multimodal fusion
- Textual Encoder
- Visual Encoder
Dual Encoder

• Large-scale contrastive video-text learning

• Favorable architecture for image-text retrieval

[HTM, Miech et al., 2019], [MIL-NCE, Miech et al., 2020], [Support Set, Patrick et al., 2020], [Frozen, Bain et al., 2021], [VideoCLIP, Xu et al., 2021]

Figure credit: Howto100m: Learning a text-video embedding by watching hundred million narrated video clips, ICCV 2019
Fusion Encoder

- Deep fusion: better model the interactions between video and text

- Strong improvements on Video QA and Video Captioning

[VideoBERT, Sun et al., 2019], [UniVL, Luo et al., 2020], [ClipBERT, Lei et al., 2021], [MERLOT, Zellers et al., 2021]

Figure credit: Less is More: CLIPBERT for Video-and-Language Learning via Sparse Sampling, CVPR 2021
Overview of the representative VLP models for video-and-language

<table>
<thead>
<tr>
<th>Model</th>
<th>Multimodal Fusion</th>
<th>Vision Encoder</th>
<th>Text Encoder</th>
<th>Decoder</th>
<th>E2E</th>
<th>Pre-training Objectives</th>
</tr>
</thead>
<tbody>
<tr>
<td>VideoBERT (Sun et al., 2019b)</td>
<td>3D CNN, Emb.</td>
<td>3D CNN</td>
<td>Xformer</td>
<td></td>
<td></td>
<td>MLM+VTM+MVM</td>
</tr>
<tr>
<td>ActBERT (Zhu and Yang, 2020)</td>
<td>OD</td>
<td>Emb.</td>
<td>X</td>
<td></td>
<td></td>
<td>MLM+VTM+MVM</td>
</tr>
<tr>
<td>CBT (Sun et al., 2019a)</td>
<td>3D CNN, Xformer</td>
<td>3D CNN</td>
<td>X</td>
<td></td>
<td></td>
<td>VTC</td>
</tr>
<tr>
<td>HERO (Li et al., 2020b)</td>
<td>2D+3D CNN, Emb.</td>
<td>Emb.</td>
<td>X</td>
<td></td>
<td></td>
<td>MLM+VTM+FOM</td>
</tr>
<tr>
<td>UniVL (Luo et al., 2020)</td>
<td>2D+3D CNN, Xformer</td>
<td>Emb.</td>
<td>✓</td>
<td></td>
<td></td>
<td>VTC+MLM+VTM</td>
</tr>
<tr>
<td>ClipBERT (Lei et al., 2021b)</td>
<td>2D CNN, Emb.</td>
<td>Emb.</td>
<td>✓</td>
<td></td>
<td></td>
<td>MLM+VTM+CG</td>
</tr>
<tr>
<td>VLM (Xu et al., 2021a)</td>
<td>2D CNN, Emb.</td>
<td>Emb.</td>
<td>✓</td>
<td></td>
<td></td>
<td>MLM-MF+MMM</td>
</tr>
<tr>
<td>DeCEMBERT (Tang et al., 2021b)</td>
<td>2D CNN, Emb.</td>
<td>Xformer</td>
<td>✓</td>
<td></td>
<td></td>
<td>MLM+VTM+CA</td>
</tr>
<tr>
<td>TACo (Yang et al., 2021b)</td>
<td>2D CNN, Xformer</td>
<td>Xformer</td>
<td>✓</td>
<td></td>
<td></td>
<td>VTM+VTC</td>
</tr>
<tr>
<td>VQA-T (Yang et al., 2021a)</td>
<td>3D CNN, Xformer</td>
<td>Xformer</td>
<td>✓</td>
<td></td>
<td></td>
<td>VTM+VTC</td>
</tr>
<tr>
<td>VICTOR (Lei et al., 2021a)</td>
<td>2D CNN, Emb.</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td>MLM+VTC+MFM</td>
</tr>
<tr>
<td>MERLOT (Zellers et al., 2021)</td>
<td>2D CNN, Xformer</td>
<td>Xformer</td>
<td>✓</td>
<td></td>
<td></td>
<td>MLM+VTC+FOM</td>
</tr>
<tr>
<td>MV-GPT (Seo et al., 2022)</td>
<td>3D CNN, Xformer</td>
<td>Xformer</td>
<td>✓</td>
<td></td>
<td></td>
<td>MLM+CG</td>
</tr>
<tr>
<td>HTM (Miech et al., 2019)</td>
<td>3D CNN, Word2Vec</td>
<td>Word2Vec</td>
<td>✓</td>
<td></td>
<td></td>
<td>VTC</td>
</tr>
<tr>
<td>MIL-NCE (Miech et al., 2020)</td>
<td>3D CNN, Word2Vec</td>
<td>Word2Vec</td>
<td>✓</td>
<td></td>
<td></td>
<td>VTC</td>
</tr>
<tr>
<td>Support Set (Patrick et al., 2020)</td>
<td>2D+3D CNN, Xformer</td>
<td>Xformer</td>
<td>✓</td>
<td></td>
<td></td>
<td>VTC+CG</td>
</tr>
<tr>
<td>Frozen (Bain et al., 2021)</td>
<td>3D CNN, Xformer</td>
<td>Xformer</td>
<td>✓</td>
<td></td>
<td></td>
<td>VTC</td>
</tr>
<tr>
<td>VideoCLIP (Xu et al., 2021b)</td>
<td>3D CNN, Xformer</td>
<td>Xformer</td>
<td>✓</td>
<td></td>
<td></td>
<td>VTC</td>
</tr>
</tbody>
</table>
Video-Text Contrastive Learning (VTC)

- Borrow the idea from contrastive learning
- VTC aims to learn the correspondence between video and text

Many follow-up works propose to collect better positive and negative pairs

Howto100m: Learning a text-video embedding by watching hundred million narrated video clips, ICCV 2019
MIL-NCE

- Multiple Instance Learning (MIL) and Noise Contrastive Estimation (NCE)
- Try to mitigate the misalignment between video and transcript
- Consider a set of multiple positive candidate pairs

Figure 2: **Left.** Our MIL-NCE makes it possible to consider a set of multiple positive candidate pairs \(\{(x, y), (x, y^1), \ldots, (x, y^t)\}\) while the standard NCE approach would only consider the single \((x, y)\) training pair and miss the visually grounded object description *sander from pair* \((x, y^3)\) or the action description *sanding down from* \((x, y^6)\). **Right.** Given a video \(x\) and an associated set of positive narration candidates \(P\) (green triangles) that may or may not be correct, our MIL-NCE selects multiple correct positives (large blue areas) while downweighting incorrect positives (smaller blue areas) based on a discriminative ratio against negatives \(N\) (red squares). In contrast, traditional MIL considers only one positive (orange circle) while discarding the rest.
Masked Language Modeling (MLM)

- MLM is a direct adoption from NLP field
- Facilitate the multimodal fusion between video and text

Figure credit: VideoBERT: A Joint Model for Video and Language Representation Learning, ICCV 2019
Video-Text Matching (VTM)

• Given a batch of positive and negative video-text pairs, VTM aims to identify which videos and texts correspond to each other.

• Often formulate as a binary classification task

Figure credit: VideoBERT: A Joint Model for Video and Language Representation Learning, ICCV 2019
Masked Video Modeling (MVM)

• Similar to MLM, MVM is also developed to reconstruct the masked input visual tokens
• Visual features are high-dimensional and continuous
• Little-to-none effects in the pre-training

Hero: Hierarchical encoder for video+language omni-representation pre-training, EMNLP 2020
ViLT: Vision-and-language transformer without convolution or region supervision, ICML 2021
Outline

• Data and challenges
• Pioneer work in video-text pre-training
• Advanced pre-training tasks
• Transferring image-text model
Masked Visual-token Modeling

- Reconstruct the **discrete latent codes** from pre-trained DALL-E
- Promising improvements for video-and-language pre-training
Frame Order Modeling (FOM)

• During training, a percentage of the frames is randomly selected to be shuffled, and the goal is to reconstruct their original temporal order.

• Formulate FOM as a classification task and predict the timestamp.

Hero: Hierarchical encoder for video+language omni-representation pre-training, EMNLP 2020
Merlot: Multimodal neural script knowledge models, NeurIPS 2021
Object-level Supervision

- Object-level supervision can enhance cross-modality alignment

It is helpful to learn fine-grained region-entity alignment

Align and Prompt: Video-and-Language Pre-training with Entity Prompts, CVPR 2022
Object-aware Video-language Pre-training for Retrieval, CVPR 2022
Actbert: Learning global-local video-text representations, CVPR 2020
Outline

• Data and challenges
• Pioneer work in video-text pre-training
• Advanced pre-training tasks
• Transferring image-text model
Transferring Image-Text Model

• In core video problems, leveraging ImageNet pre-trained weights as an initialization is usually helpful

Can we leverage well pre-trained image-text model for video-text tasks?

BEVT: BERT Pretraining of Video Transformers, CVPR 2022
Video Swin Transformer, ICCV 2021
VidTr: Video Transformer Without Convolutions, ICCV 2021
Mask2Former for Video Instance Segmentation, ArXiv 2021
ClipBERT

• Pre-train with MLM + ITM on image-text pairs (COCO + VG Captions)
• Avoid the excessive cost of video-text pre-training

<table>
<thead>
<tr>
<th>Weight Initialization</th>
<th>MSRVTT Retrieval</th>
<th>MSRVTT-QA Acc.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R1</td>
<td>R5</td>
</tr>
<tr>
<td>CNN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>random</td>
<td>0.3</td>
<td>0.4</td>
</tr>
<tr>
<td>random</td>
<td>0.0</td>
<td>0.2</td>
</tr>
<tr>
<td>TSN, K700</td>
<td>5.7</td>
<td>22.1</td>
</tr>
<tr>
<td>ImageNet</td>
<td>7.2</td>
<td>23.3</td>
</tr>
<tr>
<td>grid-feat</td>
<td>7.4</td>
<td>21.0</td>
</tr>
<tr>
<td>image-text pre-training</td>
<td>10.2</td>
<td>28.6</td>
</tr>
</tbody>
</table>

Table 5: Impact of weight initialization strategy.

Image-text pre-training helps video-text tasks!
CLIP for X

- CLIP4Clip is post-pretrained with contrastive loss on HT100M

Large-scale image-text pre-training also helps video-text tasks

CLIP4Caption: CLIP for Video Caption, arXiv 2021
CLIP4Clip: An Empirical Study of CLIP for End to End Video Clip Retrieval, arXiv 2021
TubeDETR

- DETR style architecture for spatio-temporal video grounding
- Image-text pre-training (COCO, VG, F30K)

![Diagram of TubeDETR](image)

Figure 1. Spatio-temporal video grounding requires reasoning about space, time, and language.

Image-text pre-training can also help advanced video-text downstream tasks

<table>
<thead>
<tr>
<th>Pre-Training</th>
<th>Decoder Self-Attention Transfer</th>
<th>m.IoU</th>
<th>m.vIoU</th>
<th>vIoU @0.3</th>
<th>vIoU @0.5</th>
<th>m.sIoU</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>X</td>
<td>42.8</td>
<td>23.5</td>
<td>33.2</td>
<td>20.9</td>
<td>38.5</td>
</tr>
<tr>
<td>2.</td>
<td>☑</td>
<td>43.8</td>
<td>28.6</td>
<td>39.8</td>
<td>27.3</td>
<td>46.6</td>
</tr>
<tr>
<td>3.</td>
<td>☑ Temporal</td>
<td>45.9</td>
<td>30.3</td>
<td>42.3</td>
<td>29.8</td>
<td>47.7</td>
</tr>
</tbody>
</table>

Table 2. Effect of the weight initialization for our model on the VidSTG validation set.
Flamingo with Perceiver Resampler

A flexible architecture that can take both images and videos as inputs.
Applying GIT to Video Domain

Figure 2: Network architecture of our GIT, composed of one image encoder and one text decoder. (a): The training task in both pre-training and captioning is the language modeling task to predict the associated description. (b): In VQA, the question is placed as the text prefix. (c): For video, multiple frames are sampled and encoded independently. The features are added with an extra learnable temporal embedding (initialized as 0) before concatenation.

Adaptation with sparsely-sampled frames can generate new SOTA on popular benchmark

<table>
<thead>
<tr>
<th>Video captioning</th>
<th>Video QA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MSVD</td>
</tr>
<tr>
<td>Prior SOTA</td>
<td>120.6</td>
</tr>
<tr>
<td>GIT (ours)</td>
<td>180.2</td>
</tr>
<tr>
<td>Δ</td>
<td>+59.6</td>
</tr>
</tbody>
</table>
Comprehensive Benchmarks

- VALUE (Li et al. '21)
- GIT (Wang et al. '22)
- MERLOT (Zeller et al. '21)
- MERLOT RESERVE (Zeller et al. '22)
- MERLOT (Zeller et al. '21)
- HD-VILA (Xue et al. '22)
- Frozen (Bain et al. '21)

Transfer Image-Text Models

- ClipBERT (Lei et al. '21)
- Clip4Clip (Luo et al. '21)
- Clip4Caption (Tang et al. '21)
- Flamingo (Alayrac et al. '22)
- GIT (Wang et al. '22)

Enhanced Pre-training

- MERLOT (Zeller et al. '21)
- HD-VILA (Xue et al. '22)

Advanced Pre-training Tasks

- Support-Set (Patrick et al. '20)
- VIOLET (Fu et al. '21)
- OA-Trans (Wang et al. '22)
- ALPRO (Li et al. '22)
- BridgeFormer (Ge et al. '22)

Probing Analysis

- Contrast Sets (Park et al. '22)
- ATP (Buch et al. '22)

Applications to Video Understanding

- VideoCLIP (Xu et al. '20)
- ActionCLIP (Wang et al. '21)
- EfficientPrompt (Ju et al. '21)

More Languages

- Tencent-MSVE (Zeng et al. '21)

Unified Modeling

- UniPerceiver (Zhu et al. '22)
- SkillNet (Dai et al. '22)
- LAVENDER (Li et al. '22)

VideoCLIP (Xu et al. '20)

VideoBERT (Sun et al. '19)

UniVL (Luo et al. '20)

HTM (Miech et al. '19)

MIL-NCE (Miech et al. '20)

HERO (Li et al. '20)

MMT (Li et al. '21)

HiT (Liu et al. '21)

VATT (Akbari et al. '21)

MV-GPT (Seo et al. '22)

AVLNet (Rouditchenko et al. '21)

ATP (Buch et al. '22)

TAN (Han et al. '22)

CLAP (Xu et al. '22)

Bridge-Prompt (Li et al. '22)

P3IV (Zhao et al. '22)

More Languages

- Tencent-MSVE (Zeng et al. '21)

Unified Modeling

- UniPerceiver (Zhu et al. '22)
- SkillNet (Dai et al. '22)
- LAVENDER (Li et al. '22)

Advanced Pre-training Tasks

- Support-Set (Patrick et al. '20)
- VIOLET (Fu et al. '21)
- OA-Trans (Wang et al. '22)
- ALPRO (Li et al. '22)
- BridgeFormer (Ge et al. '22)

Probing Analysis

- Contrast Sets (Park et al. '22)
- ATP (Buch et al. '22)

Applications to Video Understanding

- VideoCLIP (Xu et al. '20)
- ActionCLIP (Wang et al. '21)
- EfficientPrompt (Ju et al. '21)

More Languages

- Tencent-MSVE (Zeng et al. '21)

Unified Modeling

- UniPerceiver (Zhu et al. '22)
- SkillNet (Dai et al. '22)
- LAVENDER (Li et al. '22)

Advanced Pre-training Tasks

- Support-Set (Patrick et al. '20)
- VIOLET (Fu et al. '21)
- OA-Trans (Wang et al. '22)
- ALPRO (Li et al. '22)
- BridgeFormer (Ge et al. '22)

Probing Analysis

- Contrast Sets (Park et al. '22)
- ATP (Buch et al. '22)

Applications to Video Understanding

- VideoCLIP (Xu et al. '20)
- ActionCLIP (Wang et al. '21)
- EfficientPrompt (Ju et al. '21)

More Languages

- Tencent-MSVE (Zeng et al. '21)

Unified Modeling

- UniPerceiver (Zhu et al. '22)
- SkillNet (Dai et al. '22)
- LAVENDER (Li et al. '22)

Advanced Pre-training Tasks

- Support-Set (Patrick et al. '20)
- VIOLET (Fu et al. '21)
- OA-Trans (Wang et al. '22)
- ALPRO (Li et al. '22)
- BridgeFormer (Ge et al. '22)

Probing Analysis

- Contrast Sets (Park et al. '22)
- ATP (Buch et al. '22)

Applications to Video Understanding

- VideoCLIP (Xu et al. '20)
- ActionCLIP (Wang et al. '21)
- EfficientPrompt (Ju et al. '21)

More Languages

- Tencent-MSVE (Zeng et al. '21)

Unified Modeling

- UniPerceiver (Zhu et al. '22)
- SkillNet (Dai et al. '22)
- LAVENDER (Li et al. '22)
Looking forward

• How to effectively transfer image-text model to video-text tasks?
 • Many recent methods only use a naïve frame concatenation

• Temporal modeling has not been well-explored
 • Most existing studies focus mainly on spatial modeling