

LAVENDER: Unifying Video-Language Understanding as Masked Language Modeling

Linjie Li, Zhe Gan, Kevin Lin, Chung-Ching Lin, Zicheng Liu, Ce Liu, Lijuan Wang

Paper Tag: THU-PM-240

LAVENDER: unify all as open-vocabulary generation via MLM

- -> Removes task-specific heads, all task can share the same MLM head
- -> Can easily adapted to multi-task finetuning
- -> Enable zero-shot capability on QA tasks, even without leveraging the super power from LLMs

Figure 1. Overview of LAVENDER (LAnguage-VidEo uNDERstanding) model. LAVENDER unifies both pre-training and downstream finetuning as Masked Language Modeling.

Common practices in Video-language Modeling

- -> Add a task-specific head for each task or even each dataset
- -> No ZS capability for QA tasks

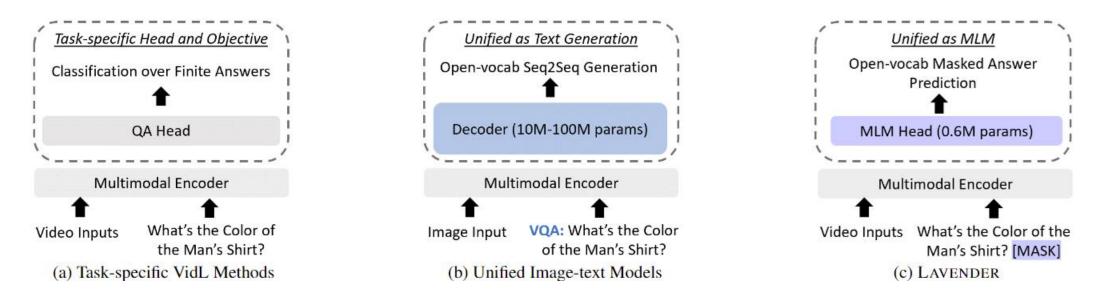


What is a cute
Walking

[Open-ended] **Classification** over a predefined answer dictionaries [Multiple-choice] **Classification** over the answer choices

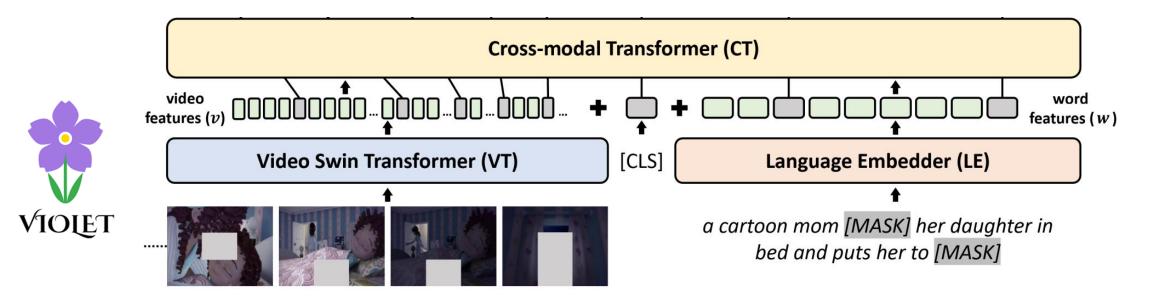
Video Captioning

"cartoon people eating at restaurant"

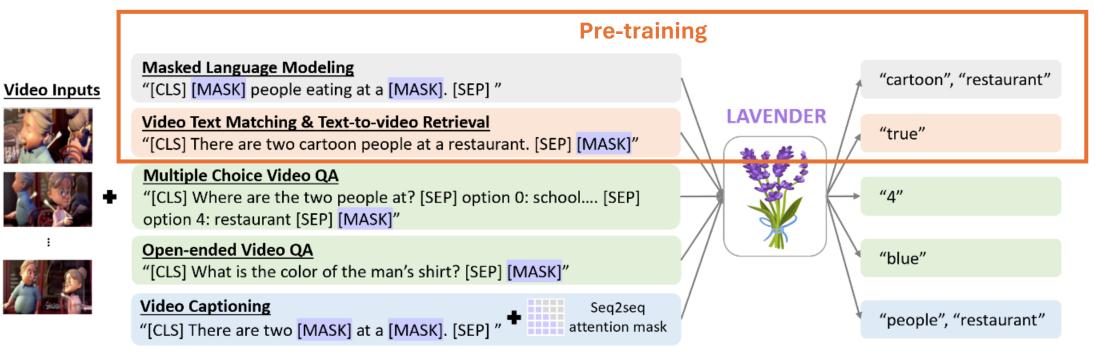

Open-vocabulary generation

Text-to-video Retrieval "cartoon people eating at restaurant"

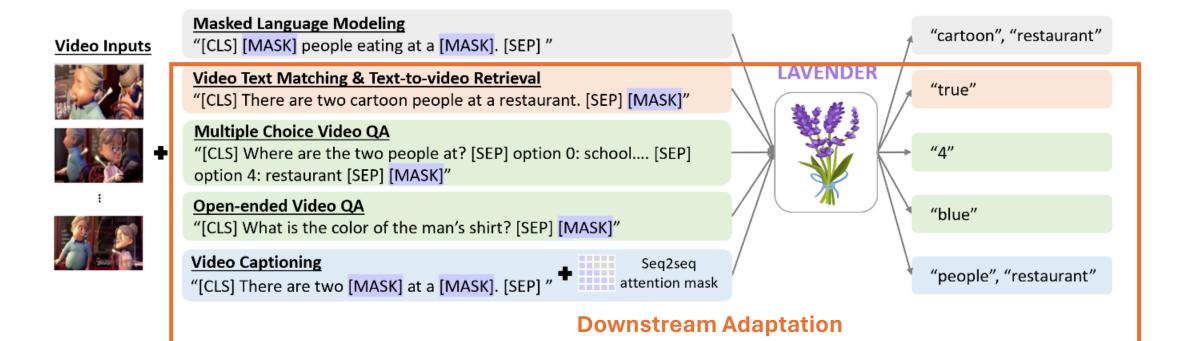
Classification / **Ranking** over positive pairs and negative pairs


Comparison to existing methods

- Unlike task-specific designs in existing VidL methods, LAVENDER unifies all tasks as MLM
- We adopt an encoder-only architecture, with a lightweight MLM head, instead of the heavy decoder in unified image-text models


LAVENDER

- Model Architecture
 - Text Encoder: word embedding layer
 - Video Encoder: Video Swin Transformer
 - Fusion Encoder: 12 Transformer layers for cross-modal modeling


LAVENDER

- Model Architecture
 - Text Encoder: word embedding layer
 - Video Encoder: Video Swin Transformer
 - Fusion Encoder: 12 Transformer layers for cross-modal modeling

LAVENDER

- Model Architecture
 - Text Encoder: word embedding layer
 - Video Encoder: Video Swin Transformer
 - Fusion Encoder: 12 Transformer layers for cross-modal modeling

Comparison to task-specific baseline

VidL	Task-specific	Finetune			Meta	TGIF	MSVD	DiDeMo	MSRVTT
Pre-training	designs	setting	#Params	#	Ave.	Action	QA	Ret.	Cap.
		ST	4(P+H)	1	45.5	93.5	40.8	0.0^{4}	47.7
-	-	MT	P+H	2	58.5	95.9	47.4	41.2	50.0
	Head	ST	4(P+H)	3	40.1	31.9	44.2	36.7	47.4
		MT	P+4H	4	55.6	94.1	44.6	35.4	48.3
VTM+MLM	II J	ST	4(P+H)	5	64.0	94.5	46.7	59.0	55.7
V I IVI+IVILIVI	Head	MT	P+4H	6	62.4	95.5	47.7	53.0	53.3
	-	ST	4(P+H)	7	68.9	95.8	54.4	68.2	57.3
VTM (as MI M) MI M	-			8	68.3	96.5	53.5	65.8	57.4
VTM (as MLM)+MLM	Task Prompt	MT	P+H	9	67.9	96.2	53.4	65.6	56.4
	Task Token			10	67.9	96.5	53.6	64.9	56.7

• Task-specific baseline with different head designs for different tasks vs. LANVENDER with the same MLM head for all tasks

Comparison to task-specific baseline (w/ video-language pre-training)

VidL	Task-specific	Finetune			Meta	TGIF	MSVD	DiDeMo	MSRVTT
Pre-training	designs	setting	#Params	#	Ave.	Action	QA	Ret.	Cap.
		ST	4(P+H)	1	45.5	93.5	40.8	0.0^{4}	47.7
-	-	MT	P+H	2	58.5	95.9	47.4	41.2	50.0
	Head	ST	4(P+H)	3	40.1	31.9	44.2	36.7	47.4
		MT	P+4H	4	55.6	94.1	44.6	35.4	48.3
VTM+MLM	Head	ST	4(P+H)	5	64.0	94.5	46.7	59.0	55.7
V I IVI+IVILIVI	neag	MT	P+4H	6	62.4	95.5	47.7	53.0	53.3
	-	ST	4(P+H)	7	68.9	95.8	54.4	68.2	57.3
VTM (as MI M) I MI M	-			8	68.3	96.5	53.5	65.8	57.4
VTM (as MLM)+MLM	Task Prompt	MT	P+H	9	67.9	96.2	53.4	65.6	56.4
	Task Token			10	67.9	96.5	53.6	64.9	56.7

• Single-task Finetuning

• LAVENDER (L5) significantly outperforms task-specific baseline (L7), with +4.9 on Meta-Ave.

Comparison to task-specific baseline (w/ video-language pre-training)

VidL	Task-specific	Finetune			Meta	TGIF	MSVD	DiDeMo	MSRVTT
Pre-training	designs	setting	#Params	#	Ave.	Action	QA	Ret.	Cap.
		ST	4(P+H)	1	45.5	93.5	40.8	0.0^{4}	47.7
	-	MT	P+H	2	58.5	95.9	47.4	41.2	50.0
-	Head	ST	4(P+H)	3	40.1	31.9	44.2	36.7	47.4
		MT	P+4H	4	55.6	94.1	44.6	35.4	48.3
VTM+MLM	Hand	ST	4(P+H)	5	64.0	94.5	46.7	59.0	55.7
V I WI HVILIVI	Head	MT	P+4H	6	62.4	95.5	47.441.250.044.236.747.444.635.448.346.759.055.747.753.053.3 54.468.2 57.353.565.8 57.4 53.465.656.4	53.3	
	-	ST	4(P+H)	7	68.9	95.8	54.4	68.2	57.3
VTM (og MI M) i MI M	-			8	68.3	96.5	53.5	65.8	57.4
VTM (as MLM)+MLM	Task Prompt	MT	P+H	9	67.9	96.2	53.4	65.6	56.4
	Task Token			10	67.9	96.5	53.6	64.9	56.7

- Single-task Finetuning
 - LAVENDER (L5) significantly outperforms task-specific baseline (L7), with +4.9 on Meta-Ave.
- Multi-task Finetuning
 - LAVENDER (L6) consistently outperforms task-specific baseline (L8), with +5.9 on Meta-Ave.

Comparison to task-specific baseline (w/ video-language pre-training)

VidL	Task-specific	Finetune			Meta	TGIF	MSVD	DiDeMo	MSRVTT
Pre-training	designs	setting	#Params	#	Ave.	Action	QA	Ret.	Cap.
		ST	4(P+H)	1	45.5	93.5	40.8	0.0^{4}	47.7
	-	MT	P+H	2	58.5	95.9	47.4	41.2	50.0
-	Head	ST	4(P+H)	3	40.1	31.9	44.2	36.7	47.4
		MT	P+4H	4	55.6	94.1	44.6	35.4	48.3
VTM+MLM	Head	ST	4(P+H)	5	64.0	94.5	46.7	59.0	55.7
V I WI+WILWI	neau	MT	P+4H	6	62.4	95.5	47.7	53.0	53.3
	-	ST	4(P+H)	7	68.9	95.8	54.4	68.2	57.3
VTM (og MI M) i MI M	-			8	68.3	96.5	53.5	65.8	57.4
VTM (as MLM)+MLM	Task Prompt	MT	P+H	9	67.9	96.2	53.4	65.6	56.4
	Task Token			10	67.9	96.5	53.6	64.9	56.7

• Single-task Finetuning

- LAVENDER (L5) significantly outperforms task-specific baseline (L7), with +4.9 on Meta-Ave.
- Multi-task Finetuning
 - LAVENDER (L6) consistently outperforms task-specific baseline (L8), with +5.9 on Meta-Ave.
 - LAVENDER can also support task-specific prompt (L9) / token (L10) for multi-task finetuning, by simply prepending the prompt or a learnable token to the text input, but does not bring performance improvements

Multi-task finetuning

Can we have a unified architecture that supports all downstream tasks simultaneously without introducing task-specific heads?

Multi-task Settings

- MT (all-in-one): a single set of parameters for all tasks
- MT (best): the best performing checkpoint for each task while training MT (all-in-one)
- MT -> ST: with multi-task finetuning as 2nd stage pre-training and then finetune on each task

Finetune		Meta		TGIF			MSR	VTT		1	LSMD	С		MSVI)	DiDeMo
Method	# Params	Ave.	Act.	Trans.	Frame	MC	QA	Ret	Cap	MC	FiB	Ret	QA	Ret	Cap	Ret
ST	14P	73.9	95.8	99.1	72.2	96.6	44.2	58.9	57.3	84.5	56.9	39.8	54.4	67.6	139.4	68.2
MT (all-in-one)	Р	73.4	95.8	98.0	70.7	93.9	44.1	56.3	57.1	85.3	56.5	39.4	53.4	69.2	141.1	66.1
MT (best)	14P	73.8	95.8	98.3	71.6	94.3	44.2	56.4	57.2	86.0	56.7	39.4	55.4	69.3	141.6	66.5
$\text{MT} \rightarrow \text{ST}$	14P	74.2	96.6	98.5	71.2	96.0	44.1	58.8	58.0	85.3	56.9	39.8	53.5	69.7	142.9	67.7
MT (all-in-one) TS	>P	69.2	93.8	97.2	65.4	92.2	41.7	52.7	54.2	83.0	49.5	34.7	49.2	65.6	133.7	56.5

- Best performing setting: MT -> ST
- All-in-one is very competitive, with only -0.5 performance drop from ST baseline on Meta Ave.
- Compared to task-specific baseline, we observe a consistent gain of +4.2 on Meta-Ave.

Few-shot Generalizability

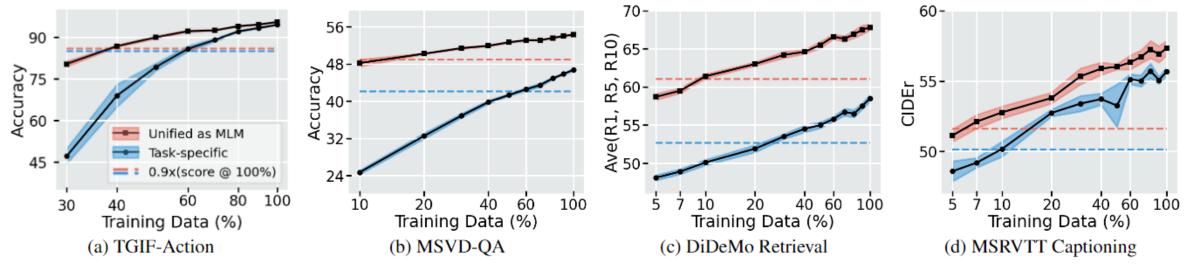


Figure 3. **Few-shot Evaluation** under VidL Pre-training. Each experiment are repeated 5 times with different random seeds. The shaded areas highlight the standard error. Percentage of training data needed to achieve 90% of the full model performance: (a) 40%, (b) 10%, (c) 10%, (d) 6% for LAVENDER (unified as MLM, red) and (a) 60%, (b) 60%, (c) 25%, (d) 10% for task-specific baseline LAVENDER-TS (blue).

• LAVENDER show clearly better generalizability to unseen testing data when trained with limited training data.

Zero-shot Video QA

	# pre-train		TGIF		MSR	VTT	LSN	ADC .	MSVD
Method	video/images	Act.	Trans.	Frame	MC	QA	MC	FiB	QA
JustAsk [73]	69M / -	-	-	-	-	2.9	-	-	7.5
MERLOT RESERVE [79]	1B/ -	-	-	-	-	5.8	-	31.0	-
BLIP [32]	- / 129 M	-	-	-	-	19.2	-	-	35.2
Flamingo [2]	2.1B / 27M	-	-	-	-	19.2	-	-	35.2
FrozenBiLM [74]	- / 10 M	-	-	41.9	-	16.9	-	51.5	33.8
All-in-one [62]	283M / -	-	-	-	80.3	-	56.3	-	-
LAVENDER-TS	2.5M / 3M	48.5	47.9	0.0	84.6	0.0	66.9	0.0	0.0
LAVENDED	2.5M / 3M	52.6	54.1	16.7	86.7	4.5	73.8	34.2	11.6
LAVENDER	14M / 16M	55.1	53.8	19.6	87.2	2.7	73.9	36.7	9.2

Table 4. Zero-shot Evaluation on Video QA (top-1 accuracy). Models are evaluated directly after pre-training. BLIP [32] is additionally supervised with VQA v2 [20], and MERLOT RESERVE [79] is pre-trained with additional audio modality and uses GPT-3 [6] to reword questions into masked statements. Flamingo [2] and FrozenBiLM [74] leverage large language models with more than 8x more parameters than the BERT-Base model in LAVENDER.

- LAVENDER can be seamlessly applied to Video QA in a zero-shot manner, with the same MLM head from pre-training
- Compared with previous methods, LAVENDER can achieve competitive ZS performance, even when pretrained with much less data (5.5M vs. >69M) and without leveraging powerful LLMs

Comparison with SOTA

LAVENDER

2.5M/3M

14M / 16M

198M

	# Pretrain	# Params in		TGIF		MSR	VTT	LSN	/IDC	MSVD	Captio	ning	
Method	videos/images	Backbone	Act.	Trans.	Frame	MC	QA	MC	FiB	QA	MSRVTT	MSVE	
ClipBERT [29]	- / 200K	137M	82.8	87.8	60.3	88.2	37.4	-	-	-	-	-	
JustAsk [73]	69M / -	166M	-	-	-	-	41.5	-	-	46.3	-	-	
MERLOT [80]	180M / -	219M	94.0	96.2	69.5	90.9	43.1	81.7	52.9	-	-	-	
VIOLET [15]	183M / 3M	198M	92.5	95.7	68.9	91.9	43.9	82.8	53.7	47.9	-	-	
All-in-one [62]	283M / -	110M	95.5	94.7	66.3	92.3	46.8	84.4	-	48.3	-	-	
SwinBERT [36]	- / -	198M	-	-	-	-	-	-	-	-	53.8	120.6	
MV-GPT [54]	53M / -	314M	-	-	-	-	41.7	-	-	-	60.0	-	
LANENDED	2.5M / 3M	198M	96.6	99.1	72.2	96.6	44.2	86.0	56.9	55.4	58.0	142.9	
LAVENDER	14M / 16M	1981	96.3	98.7	73.5	97.4	45.0	87.0	57.1	56.6	60.1	150.7	
	Table 5.	Comparison w	ith SO	TA on vi	deo QA (accurac	cy) and	captio	oning (C	CIDEr).			
	# Pretrain	# Para	ns in				Text	-to-Vide	o Retriev	val			
Method	videos/ima	ages Backbo	one	MSRVTT			DiDeMo			MSVD		LSMDC	
ClipBERT [29]	- / 200K	137M		22.0/4	6.8 / 59.9	20.4	/ 48.0 /	60.8		-	-		
Frozen [3]	2.5M / 3.2	2M 232M		32.5/6	1.5 / 71.2	31.0	/ 59.8 /	72.4	45.6/2	79.8 / 88.2	15.0 / 30.	8 / 39.8	
VIOLET [15]	183M / 3N	M 198M		34.5/6	3.0/73.4	32.6	/ 62.8 /	74.7		-	16.1 / 36	6/41.2	
All-in-one [62]	103M / -	110 M		37.9/6	8.1 / 77.1	32.7	/ 61.4 /	73.5		-	-		
BridgeFormer [1	9] - / 400M	~ 149 M	л	44.9/7	1.9 / 80.3		-		54.4 / 8	82.8 / 89.4	21.8/41	1 / 50.6	
QB-Norm [5]	- / 400M	~ 149 M	Л	47.2/7	3.0 / 83.0	43.3	/ 71.4 /	80.8	47.6/2	77.6 / 86.1	22.4 / 40.	1/49.5	
CAMoE [11]	- / 400M	~ 149 M	Л	47.3 / 7	4.2 / 84.5	43.8	/ 71.4 /	79.9	49.8 / 7	79.2/87.0	25.9/46.	1/53.7	

Table 6. Comparison with SOTA on text-to-video-retrieval (R1/5/10). CAMoE [11] assumes the model can see all queries during testing.

47.4 / 74.7 / 82.4

53.4 / 78.6 / 85.3

46.3 / 76.9 / 86.0

50.1 / 79.6 / 87.2

22.2 / 43.8 / 53.5

26.1 / 46.4 / 57.3

• Without any task-specific architectures, LAVENDER outperforms the prior state-of-the-art on 11 out of 14 benchmarks considered

37.8 / 63.8 / 75.0

40.7 / 66.9 / 77.6

LAVENDER: Unifying Video-Language Understanding as Masked Language Modeling

Linjie Li, Zhe Gan, Kevin Lin, Chung-Ching Lin, Zicheng Liu, Ce Liu, Lijuan Wang

Paper Tag: THU-PM-240